
| 1

Preface

T
his document is a collection of essays writ-

ten by the students of the seminar course

INF328B on History of Programming Lan-

guages that was given at the University of Bergen

(Norway) in the Spring term 2021. Instructors of

the course were Mikhail Barash and Anya Helene

Bagge from Bergen Language Design Laboratory

at the Department of Informatics.

We had 13 students who actively participated

in the course (11 Master students, 1 Bachelor

student, and 1 Ph.D. student). At each session

(classes were held once a week), a student or a

team of two students presented a paper from The

Fourth ACM SIGPLAN History of Programming

Languages Conference (a.k.a. HOPL IV, to be held

in June 20211).

The students of the course have presented HOPL

IV papers on history of the following program-

ming languages: APL, Clojure, D, F#, Groovy,

JavaScript, Logo, S & R, and Standard ML.

The presentations on three languages from HOPL

IV were given virtually at our course by the corre-

sponding HOPL IV papers’ (co)author(s): Bjarne
Stroustrup talked about history of C++2, John
Reid presented history of Fortran3, and Peter
Van Roy gave a talk on history of Oz4.

To document our students’ learning experiences

with this course, we asked them to prepare a

short essay summarizing the HOPL IV paper they

have read and presented. The structure of each

essay is as follows5:

• a short discussion on why the student

has chosen a particular HOPL IV paper to

present,

• a brief overview of that HOPL IV paper,

• a brief overview of the programming lan-

guage,

• a discussion of the student’s most favourite

feature of that language,

• related work on the language, both within

the context of HOPL I–IV conferences and

a wider context,

• a brief overview of tooling available for the

language (compilers, IDEs),

• the student’s personal experience with the

language and the HOPL IV paper,

• questions that the student would ask the

author(s) of the HOPL IV paper.

We see these essays as a valuable documentation

of students’ learning experiences, and we hope

that this will be an exciting read for everyone.

In the meantime, we are looking forward to the

next edition of our course—to be held in 2030s—

based on papers from the next HOPL conference.

Bergen, 14th June 2021

Mikhail Barash (mikhail.barash@uib.no)

Anya Helene Bagge (anya@ii.uib.no)

1We are thankful to HOPL IV organizing committee, in particular, Guy L. Steele Jr., for offering a special rate for the students
of our course to participate in the conference.

2The talk was organized in cooperation with University of Turku (Finland): https://www.utu.fi/fi/ajankohtaista/uu
tinen/utu-tech-webinar-bjarne-stroustrup.

3Announcement: https://www.uib.no/ii/144128/history-coarrays-and-spmd-parallelism-fortran.
4Announcement: https://www.uib.no/en/ii/144917/history-oz-multiparadigm-language.
5The LATEXtemplate we used is an adapted version of https://github.com/sylvain-kern/magazine.

mikhail.barash@uib.no
anya@ii.uib.no
https://www.utu.fi/fi/ajankohtaista/uutinen/utu-tech-webinar-bjarne-stroustrup
https://www.utu.fi/fi/ajankohtaista/uutinen/utu-tech-webinar-bjarne-stroustrup
https://www.uib.no/ii/144128/history-coarrays-and-spmd-parallelism-fortran
https://www.uib.no/en/ii/144917/history-oz-multiparadigm-language
https://github.com/sylvain-kern/magazine

| 2

Contents
APL 3

Essay by Karl Henrik Elg Barlinn . 4

Essay by Sondre Nilsen . 8

Clojure 13
Essay by Daniel Berge . 14

Essay by Andreas Garvik . 17

D 20
Essay by Marius Kleppe Larnøy . 21

F# 25
Essay by Kenneth Fossen . 26

Groovy 30
Essay by Jenny Strømmen . 31

JavaScript 34
Essay by Kathryn Frid . 35

Essay by Åsmund Aqissiaq Arild Kløvstad . 38

Logo 43
Essay by Simen André Lien . 44

Essay by Emily Mi L. Nguyen . 47

S & R 51
Essay by Janne Hauglid . 52

Standard ML 55
Essay by Knut Anders Stokke . 56

APL

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386319

Link to the students’ presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/APL.pdf

https://dl.acm.org/doi/10.1145/3386319
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/APL.pdf

APL | 4

Essay on History of
APL

Karl Henrik Elg Barlinn
University of Bergen

T
he paper “APL since 1978” [1] by Roger K.W.

Hui and Morten J. Kromberg picks up the

story where the HOPL I paper The Evolu-

tion of APL [2] left off. The paper describes the

evolution of the APL umbrella of languages. It

reflects on how not only APL, but the world as

a whole, have been shaped by the great progres-

sion since 1978; and throws a few new ideas for

how APL may yet be changed.

Brief Overview of the HOPL Pa-
per
The paper starts off by presenting a historical

perspective on how the world as a whole has

changed since the previous HOPL paper on APL

[2] was presented. Then it explores all new func-

tions and primitives which have been added to

the language.

I chose this particular HOPL
paper to present because I have

always been fascinated by
interesting problems. APL is a

language which I knew nothing
about before preparing the

presentation. During the initial
elevator pitch lecture APL was

called an “array processing
language with special graphical

notation” which does sound, to
me at least, like nothing I have

come across before and very
interesting.

—Elg

It also explores what it means

to be primitive, why there are

so few of them, and what this

means for the language as a

whole. New concepts such as

leading axis (major cell) and

trains are explained with spe-

cial regard to how they drive

the continuing development of

the language. Branching lan-

guages, such as J and K, are also

mentioned in how they influ-

ence APL with their own con-

cepts and ideas. The paper also

explores the the famous sym-

bols of APL, and why there are

so few of them. APL was, in its

infancy, known for the easy and natural way a

non-technical user could create user interfaces.

How this evolved with the arrival of non-text

based user interfaces is also explored in the paper.

The paper goes on to explore how compilers, and

interpreters have changed throughout the years,

why APL does not really need a compiler, and why

it has some anyway. Finally, the paper explores

subjects that seem to interest the authors of the

paper: what’s in a name, backwards compatibil-

ity, index origin, among other more niche and

minor topics. This is not a paper strictly about

the history of APL, it is a celebration on how far

APL have come since 1978.

Brief Overview of APL
APL was created by Kenneth Iverson during the

1960s to address the shortcomings of conven-

tional mathematical notation, and to make it ex-

ecutable. As such APL is designed for executing

mathematical notation rather than a program-

ming language. This is one of the reasons it used

glyphs rather than the more normal ASCII names

we are used to in other languages like C. Curi-

ously it has no operator precedent, everything is

associated to the right. This first version of APL is

known as APL\360 was published in 1966 [1]. The

main targets of APL are domain experts without a

need to have a background in computer science.

This drives the implementers of the language to

try and accommodate this lack of formal educa-

tion in programming by for example, by making

it easy to create user interfaces.

The main features of APL is the concise way com-

plex algorithms can be created. This is done

by having functions and operators perform com-

monly needed tasks. A function is applied to

an array of arguments to produce array results.

There is also the notion of the major cell within

the design of functions. As explained by the pa-

per “A major cell of an array is a subarray with

rank one less than the rank of an array arranged

along its leading axis: an item of a vector, a row of

a matrix, a plane of a 3-d array, etc. Operating on

the leading axis is analogous to treating an array

APL | 5

as a (conceptual) vector and with the major cells

as its (conceptual) items” [1]. Some functions

mentioned in the paper are tally, which returns

the number of major cells in an array, and grade,

which when used monadically produces the in-

dices needed to sorts its argument. There are of

course others, but those are left to the reader to

explore.

In a way I always thought
programming languages should

use a C style syntax; but the
more I learn about non-C-like

languages, the more I realize
how wrong I was.

—Elg

Operators are higher order

functions, meaning they take

functions as arguments and

not arrays. An array can ei-

ther take a single argument

(monadic) or two arguments

(dyadic), but not either one or

two (ambivalent). Operators

are what distinguishes modern

APL from APL in 1978. Back

then there were only seven operators, while now

there are over twenty. The place of honor, regard-

ing operators, goes to the rank operator which

are in detail described in the paper [1]. Other op-

erators which might not be known to the reader

are power, key, stencil, and each. I implore the

reader to take a look at these fascinating opera-

tors.

APL have since influenced many modern and

widely used programming languages, such as

MATLAB, C++, Python, J, and K [5]. In conclu-

sion, APL is not a dead, ancient, language archae-

ologists are exploring, but rather a continuously

developing language which have and will be in-

fluencing new programming languages for years

to come.

User Interfaces with APL: An
Overview
Due to the non-technical nature of the target au-

dience, APL have from the very start simplified

created user interfaces for their developers. Dur-

ing the early days, when APL ran on time-shared

mainframes, the terminal were more simple to

code for. Often it only had a 28 rows and 80

columns text display, sometimes with more than

two colors! APL is very well suited for this kind

of text matrix display, after all the screen can be

looked at as another, rather special, matrix. Using

quad notation, namely �win, a user could create

state-of-the-arts character-based interfaces.

However, as the glory days of mainframes dwin-

dled, financial institutions drifted towards Mi-

crosoft Windows. Due to the fierce competitive

APL market at the time there was no standard-

isation causing APL from different vendors not

being executable. This was the time where Ob-

ject Oriented Programming (OOP) also took off,

Dyalog exploited this together with namespaces

to integrate the Win32 objects directly into the

workspace. The HOPL IV paper, written by em-

ployees at Dyalog, argues that this makes APL

significantly more powerful and easier to use.

The “C++ API” era was a frustrating time for

APL users and vendors alike. The APIs changed

rapidly, forcing vendors to rapidly innovate to

keep up with the ever changing API market. As

mentioned, APL developers have little interest in

the engineering efforts with behind the scenes

development and just wanted the applications

to keep working. Some vendors leaned too heav-

ily on deprecated frameworks, which ultimately

made their dialects to be withdrawn from the

market. The .NET framework and other more

modern frameworks are much more usable for

both users and implementers as they use the

same design patterns. It also supports features

such as reflection and dynamic code emission

which makes it easier to create a generic bridge

between APL and “normal” .NET classes. With

this APL can use the same APIs as other .NET lan-

guages to create user interfaces. Another alter-

native presentation technology, namely Jupyther

notebooks are usable by less technical users.

Related Work on APL
As mentioned, the history of APL until 1978 can

be found in The Evolution of APL [2]. This pa-

per is worth reading for the earliest history of

APL. APL is an influencing language which have

been an important influence of the rise of func-

tional programming languages[6]. APL has also

APL | 6

influenced other HOPL-relevant languages such

as C++ with individual functions and ideas [7].

MATLAB, another language represented in HOPL

IV, have called APL a predecessor of MATLAB [8].

APL has reached a point where it no longer di-

rectly influences languages, but rather influences

languages which are influenced by APL. For ex-

ample APL influenced FP [6] which again influ-

enced Haskell, a language presented at HOPL III.

Pper [1] notes a couple of other history papers in

appendix E. A History of APL in 50 Functions [3]

celebrates APLs 50th year of existence. It, un-

surprisingly, shows, explains and highlights 50

functions written in APL. For example the Halt-

ing, Monty Hall, pascals triangle, and 47 more

fascinating functions. The paper APL Quotations

and Anecdotes [4] gives a lighthearted look into

the personalities of the creators behind APL. It

features numerous puns, funny stories, interest-

ing facts, and of course quotes from the people

who created APL. The best place for learning to

program in APL is described in the next section.

Tool Support for APL
Perhaps the most useful tool for people new to

APL is https://tryapl.org/. It is an in-web-

browser Dyalog APL interpreter which works on

all modern web-browsers. You can download

Dyalog for free for non-commercial usages. If you

prefer a FOSS implementation there is https:
//www.gnu.org/software/apl/, this however

does not have an online interpreter.

Personal Experience
APL is a niche, beautiful, powerful, “read-only”

programming language. As for someone who

comes from a computer engineering background,

APL was never designed for me. It looks like

something written on The One Ring from Lord

of the Rings. This was in a way what was in-

trigued by how different it is from what I have

learned in school. In a way I always thought pro-

gramming languages should use a C style syntax;

but the more I learn about non-C-like languages,

the more I realize how wrong I was. This paper

opened my eyes, so to speak, in that it introduced

a whole new world of (to me) strange and won-

derful new ways of looking at problem solving.

For the authors of the paper I wish to ask a couple

of questions which naturally were not addressed

in the paper proper due to their non-history na-

ture. Firstly, I wish to know if there are plans to try

and popularize APL within the wider community

of programming languages. I ask this because I

see how it can be very useful for the mathemat-

ical community to write papers and be able to

execute the notation.

The second question I have is, given unlimited

influence, where do you wish to see APL be used?

If your answer is everywhere, does that mean APL

is fit to do everything? On the other hand if your

answer is not everywhere, where is not fit to be

used and why?

Finally, do you think APL with its glyphs is more

fit to be taught in school than J, as special equip-

ment is no longer an issue with UTF being widely

adopted?

References

[1] Roger K. W. Hui, Morten J. Kromberg, APL since
1978, Proc. ACM Program. Lang., Vol. 4, No.
HOPL, Article 69.

[2] Adin D. Falkoff and Kenneth E. Iverson. 1978. The
Evolution of APL. Available at: http://www.js
oftware.com/papers/APLEvol.htm.

[3] Roger K.W. Hui. 2016. A History of APL in 50
Functions. Available at: https://www.jsoftw
are.com/papers/50/.

[4] Roger K.W. Hui. 2020. APL Quotations and Anec-
dotes. Available at: https://www.jsoftware.
com/papers/APLQA.htm.

[5] Wikipedia page on “APL (programming lan-
guage)”, link: https://en.wikipedia.org/w
iki/APL_(programming_language).

[6] Awards.acm.org. 1977. ACM Award Citation
– John Backus Archived from the original
on February 12, 2008. https://web.ar
chive.org/web/20080212043802/https:
//awards.acm.org/citation.cfm?id=0703
524&srt=all&aw=140&ao=AMTURING.

[7] CPP Reference, std::iota, link: https://en.cpp
reference.com/w/cpp/algorithm/iota.

[8] Computer History Museum, An interview with
CLEVE MOLER Conducted by Thomas Haigh On
8 and 9 March, 2004 Santa Barbara, California.

https://tryapl.org/
https://www.gnu.org/software/apl/
https://www.gnu.org/software/apl/
http://www.jsoftware.com/papers/APLEvol.htm
http://www.jsoftware.com/papers/APLEvol.htm
https://www.jsoftware.com/papers/50/
https://www.jsoftware.com/papers/50/
https://www.jsoftware.com/papers/APLQA.htm
https://www.jsoftware.com/papers/APLQA.htm
https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)
https://web.archive.org/web/20080212043802/https://awards.acm.org/citation.cfm?id=0703524&srt=all&aw=140&ao=AMTURING
https://web.archive.org/web/20080212043802/https://awards.acm.org/citation.cfm?id=0703524&srt=all&aw=140&ao=AMTURING
https://web.archive.org/web/20080212043802/https://awards.acm.org/citation.cfm?id=0703524&srt=all&aw=140&ao=AMTURING
https://web.archive.org/web/20080212043802/https://awards.acm.org/citation.cfm?id=0703524&srt=all&aw=140&ao=AMTURING
https://en.cppreference.com/w/cpp/algorithm/iota
https://en.cppreference.com/w/cpp/algorithm/iota

APL | 7

Avaliable at: https://web.archive.org/web/
20141227140938/http://archive.computer
history.org/resources/access/text/20
13/12/102746804-05-01-acc.pdf.

[9] Python 3 Documentation: itertools — Func-
tions creating iterators for efficient looping.
Link: https://docs.python.org/3/librar
y/itertools.html.

https://web.archive.org/web/20141227140938/http://archive.computerhistory.org/resources/access/text/2013/12/102746804-05-01-acc.pdf
https://web.archive.org/web/20141227140938/http://archive.computerhistory.org/resources/access/text/2013/12/102746804-05-01-acc.pdf
https://web.archive.org/web/20141227140938/http://archive.computerhistory.org/resources/access/text/2013/12/102746804-05-01-acc.pdf
https://web.archive.org/web/20141227140938/http://archive.computerhistory.org/resources/access/text/2013/12/102746804-05-01-acc.pdf
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html

APL | 8

Essay on History of
APL

Sondre Nilsen
University of Bergen

T
his essay presents the paper “APL since

1978” [1], written by Roger K. W. Hui and

Morten J. Kromberg published in Pro-

ceedings of the ACM on Programming Languages,

volume 4 and will be presented at the HOPL IV

conference. This paper, as the name suggests,

is about the history of APL from 1978; though

not a history of the language but more a history

of the evolution of the language itself, how it has

changed, how influences from software and hard-

ware has changed it to where it is today. The pa-

per builds upon the history in the paper “The

Evolution of APL” [4], presented at the inaugural

HOPL conference in 1978.

Brief Overview of the HOPL Pa-
per

I chose to present this paper
mostly because APL is a

language that I think most
computer scientists / students
have seen at some point and

thought to themselves; “what on
earth is this?” I’ve come across it
at various times, mostly through

social media whenever the
famous video of an employee at

Dyalog implementing the Game
of Life in APL [10]. It is a

language unlike most other
languages, including esoteric
programming languages,——

The paper walks through

how changes in hardware has

changed what’s possible in

APL and how different dialect

and implementations have in-

spired and changed how APL

works; from the early days of

mainframes to the home com-

puter to Software-as-a-Service

(SaaS). The paper talks a bit

about the actual history of APL

as a language before getting

into the specifics on the evo-

lution of core functions and

operators, how the underlying

data structures have changed

and how we use computers

have forced APL to change alongside the rise and

fall of computing.

Much of the focus of the paper is on a few se-

lect functions and operators, as well as the un-

derlying data structures used and their imple-

mentation. It also covers how idiomatic APL has

changed over the years, how to parse and im-

plement compilers and interpreters and touches

upon the usage of glyphs in the language and

how user interfaces could be used.

The selected functions and operators are cho-

sen to highlight specific discoveries or insights

that led the design of APL forward, for example

how the tally operator 6≡ came into being after

having evolved from similar but more basic func-

tions like ρ (shape). Much of the time spent on

functions and operators focus on how different

implementations or authors came up with initial

solutions to problem, how they evolved and how

we ended up with what we have now; for example

how the rank operator ?̈ is a generalization of the

each operator ¨.

The paper also goes into the underlying data

structures used in different implementations,

from sparse arrays to arrays of objects and more.

APL has a rich history that spans a long time, es-

pecially for a language that has been mostly in a

niche of its own since nearly its inception.

Brief Overview of APL
APL, “A Programming Language”, is an array pro-

gramming language. You might make a case for

the name being a backronym, but the book pub-

lished by Iverson in 1963 is where the name is

from [6]. Core to any APL dialect is the array, be it

a single vector, a 2D matrix or a 3D plane, as well

as the use of glyphs instead of ASCII characters to

represent functions and operators (though some

dialects like J and K do use ASCII [1, p. 62]).

If you come from more conventional languages

based on object-oriented programming, it is sure

to give you a mind-bending experience when see-

ing actual APL code being written and executed.

I’m sure it’s comparable to students’ experience

when they see someone writing in a functional

programming language for the first time: how

APL | 9

can so few characters do so much?

Part of the beauty of APL is in its notation, which

was developed by Iverson from his time at Har-

vard and became the basis manipulating arrays

in what would later become APL. Functions and

operators in APL have a range of tricks up their

sleeve. A function or operator can be

1. monadic: it takes a single argument on the

right.

2. dyadic: it takes two arguments, one on the

left and one on the right.

3. ambivalent: either monadic or dyadic.

——where instead of regular
ASCII characters you use a

specialized alphabet of glyphs
and symbols to denote what you

want to do. How can anyone
actually remember and use that?

When I saw that there was a
paper this year available for APL,

I figured this was my chance to
finally be able to attempt to get a

better grasp of what APL is.
—Sondre

For example, in its monadic

form the d function means

ceil, while in dyadic form it

is max. So d3.2 returns 4 while

5.2d1.2 returns 5.2.

Furthermore, since APL is

based on array programming,

it also means that functions

and operators also work on any

array, d1.2 5.3 2.3 8.0 will

apply d to each element along

the leading axis of the array, in

this case returning 1 5 2 8. It

also works dyadically on two ar-

rays, 1.2 5.2 3.2d1 3 4will pairwise compare

the arrays and return the largest of the pair: 1.2
5.2 4. This does require the arrays to have the

same shape.

Shape and leading axis are two important con-

cepts in APL, the shape is simply the array shape,

e.g., a 2×4 matrix while leading axis is the main

axis of an array. Closely related to the leading

axis is the concept of major cells which are items

of rank one less than the array containing it ar-

ranged along its leading axis [1, p. 26]: an item in

a vector, a row in a matrix and so on.

Compared to most conventional languages, the

functions and operator may make you scratch

your head slightly: what on earth couldα(ª ?̈1)ω

possibly mean? Built-in primitive functions and

operators all use their own symbols, while more

can be accessed through quad names: �A for the

alphabet, for example. Variables and functions

can be named using the assign ← function: x ←
ι5.

Finally, we need to explain the difference be-

tween functions and operators, if you have pre-

vious experience in functional programming

explaining operators as higher-order functions

should get the point across. Functions apply to

an argument (mostly arrays) and return an ar-

ray, while operators apply functions to arrays and

therefore return derived functions.

My favorite APL feature: arrays
Now, this might feel a bit like cheating given that

it’s not really a single feature in the sense of a sin-

gle function or operator, but given how central

arrays are to APL and how foreign the concept

is to most programmers I think it is my favorite

feature from it (similar to how function composi-

tion is my favorite thing in Haskell, which—in a

similar vein—is not strictly a feature).

In most of the programming languages I use

(Rust, TypeScript, Kotlin and Python) is in some

sense built on objects, you create structures that

contain the data matching some phenomenon

and then add some methods that make sense for

that thing to have. In a language like APL you re-

ally need to radically change how you think about

the problem. As an example I will show how to

solve the Two Sum [15] problem in both Python

and APL.

In short, you are given an array of numbers and

a target value, and you need to return the indi-

cies of the numbers that sum to the target value.

So for [2,7,11,15] with a target of 9, the result

should be [0,1]. For conciseness I am omitting

imports, and these do not give the correct answer

for inputs like [3,3], 6.

APL | 10

The Python implementation is fairly straightfor-

ward, create all combinations of numbers in the

list, iterate through these tuples and find the ones

that sum to our target, then we find the indices

in our input that matches our numbers.

The APL solution looks like Egyptian hieroglyps

that somehow find the correct solution:

Here is how these functions can be called in

Python and APL, respectively:

APL as a language is truly
something unique, my brain

melts when you try to think
about problems as arrays and

not objects with state. Very
similar to how I felt when I first
learnt Haskell: awe at how easy

it makes things seem but also
very different and strange

compared to previous
experiences.

—Sondre

A couple of things to note here:

• α is the left argument,

• ω is the right argument.

This means that our twoSum
function is dyadic, the target

goes on the left and the list

on the right. I will try to ex-

plain in words, though for clar-

ity I have included a explana-

tion with code in the appendix.

1. (ω◦.+ω): first, we take

the outer product of our

list and sum each cell.

2. α=: we then find which

cells contain our target

value.

3. ι: we then find the in-

dices of our target values.

4. 1↑: finally, we take the

first element.

This to me is completely magical and awesome,

in just a few symbols we have done what the

Python solution required multiple lines to do,

and all without state, just passing the result from

one function and operator to the next. Yes, unless

you know APL the solution is utterly incompre-

hensible, but just from reading the paper and

playing around a bit on TryAPL [14] I was able to

implement this solution in a few minutes.

Related Work on APL
This paper is the successor of the previous “The

Evolution of APL” [4] paper presented at HOPL I.

This is as far as I am aware the only paper that is

directly related to APL. Array programming lan-

guages are few and far between, with APL be-

ing the only “mainstream” dialect of its kind. In

my opinion, outside of the two submitted pa-

pers there aren’t many that related directly to

APL, though two worth mentioning are the pa-

pers on MATLAB [2] and R [3], where the paper

on MATLAB actually mentions bearing a slight

resemblance of APL [2, p. 5].

R, being an array language, in some sense builds

upon the foundations laid by APL, which can be

seen with for example Dyalog having a guide to

interface with R from Dyalog APL [7], and there

is a paper on how to write R as if it was an APL

dialect [5]. I have however been unable to find

direct mentions of APL as an inspiration for R.

Tool Support for APL
There are many different dialect and descendants

of APL, each one slightly different and some very

different, so there is no single unified editor or

toolchain one can use for it. The most feature-

rich implementation with the most support is

Dyalog APL, where one can use TryAPL [14], or

their new IDE RIDE [11]. The APL Wiki [9] main-

tains a list of text editor extensions [8] that one

can use to develop with APL. As an example of in-

compatibilities between dialect, for Emacs there

are two different modes for either GNU APL [12]

or Dyalog APL, which are mutually incompatible.

APL | 11

Coming from more mainstream languages the

tooling support for APL could be described as

poor, though the RIDE IDE works as one would

expect from an editor though it is missing most

bells and whistles compared to IDEs like those

created by JetBrains [13].

If you wanted to try out APL, I can think of no bet-

ter resource than TryAPL [2]. It has help, tutorials,

explanations for most functions and operators

and interactive explanations of, for example, im-

plementing Game of Life in APL. A distant second

is RIDE, but I actually prefer TryAPL.

Personal experience
I had a blast learning about the history of APL,

and also learning how to write and (very barely)

read it. APL is a very interesting language, and

one that I has piqued my interest a few times

here and there but this was the first time I actu-

ally made an effort to understand it. The paper

did explain and introduce APL very well, though

it felt like you should have some familiarity with

array languages beforehand because some terms

or explanations were very difficult to grok.

The paper mixes discussion of implementation,

history and how things work very well, though

in my opinion the sections on parsing APL and

compilers felt a bit superflous; probably mostly

because they were the least interesting parts of

the paper in my opinion. APL as a language is

truly something unique, my brain melts when

you try to think about problems as arrays and not

objects with state. Very similar to how I felt when

I first learnt Haskell: awe at how easy it makes

things seem but also very different and strange

compared to previous experiences.

I don’t really have many questions for the au-

thors, I think the paper was very well balanced

between subject expertise, beginner explanation

and thorough introductions to the history of APL

and implementations and so on. If I would have

some feedback it’d be to include an “array pro-

gramming languages for dummies” appendix

that could be used to look up foreign concepts,

words and phrases that unfamiliar aspiring APL

developers may not know.

I highly recommend anyone with a passing inter-

est in programming languages and new ways of

approaching problems to read the paper and try

out APL for yourself. I hope that it was as enlight-

ening and exhilarating for you as it was for me,

even though it still feels like writing and reading

Egyptian hieroglyphs. The fact that the language

has been going strong for 50 years with many dif-

ferent implementations and dialects just shows

that there is a niche for these languages to occupy,

regardless of how far away from the mainstream

they are.

References

[1] R. K. W. Hui, M. J. Kromberg, APL since 1978. Proc.
ACM Program. Lang. HOPL IV. 2020.

[2] C. Moler, J. Little, A History of MATLAB, Proc. ACM
Program. Lang. HOPL IV. 2020.

[3] J. M. Chambers, S, R, and Data Science, Proc.
ACM Program. Lang. HOPL IV. 2020.

[4] A. D. Falkoff, K. E. Iverson, The Evolution of APL,
ACM HOPL I. 1978.

[5] J. De Leeuw, M. Yajima, APL in R. Available at:
10.13140/RG.2.1.2372.0724.

[6] K. E. Iverson, A Programming Language. John Wi-
ley & Sons, Inc. 1962.

[7] Dyalog APL R Interface Guide. Available at:
http://docs.dyalog.com/14.1/Dyalog%20
APL%20R%20Interface%20Guide.pdf.

[8] APL Wiki page on “Text editors”. Link: https:
//aplwiki.com/wiki/Text_editors.

[9] APL Wiki. Link: https://aplwiki.com/wiki
/Main_Page.

[10] Conway’s Game Of Life in APL (video recording).
Link: https://www.youtube.com/watch?v=a
9xAKttWgP4&t=17s.

[11] RIDE, Dyalog Ltd. Link: https://github.com
/Dyalog/ride/.

[12] GNU APL. Link: https://www.gnu.org/soft
ware/apl/.

[13] JetBrains. Link: https://www.jetbrains.co
m/.

[14] TryAPL. Link: https://tryapl.org/.

[15] Two Sum, Leet Code. Link: https://leetcode
.com/problems/two-sum/.

10.13140/RG.2.1.2372.0724
http://docs.dyalog.com/14.1/Dyalog%20APL%20R%20Interface%20Guide.pdf
http://docs.dyalog.com/14.1/Dyalog%20APL%20R%20Interface%20Guide.pdf
https://aplwiki.com/wiki/Text_editors
https://aplwiki.com/wiki/Text_editors
https://aplwiki.com/wiki/Main_Page
https://aplwiki.com/wiki/Main_Page
https://www.youtube.com/watch?v=a9xAKttWgP4&t=17s
https://www.youtube.com/watch?v=a9xAKttWgP4&t=17s
https://github.com/Dyalog/ride/
https://github.com/Dyalog/ride/
https://www.gnu.org/software/apl/
https://www.gnu.org/software/apl/
https://www.jetbrains.com/
https://www.jetbrains.com/
https://tryapl.org/
https://leetcode.com/problems/two-sum/
https://leetcode.com/problems/two-sum/

APL | 12

Appendix: Explanation of Two
Sum Function in APL

1. First, we create our input list and print it:

2. The outer product takes a left and right ar-

gument and a binary function. Our binary

function here is the dyadic variant of “,”:

catenate. This creates a matrix of each pos-

sible pairing of elements in our array:

3. Instead of using catenate, we can sum each

cell; in our case we are looking for 9:

4. Then we simply check which cells equal 9.

Due to symmetry from the outer product,

there are two cells that equals 9: those in

positions (0, 1) and (1, 0).

5. Using the where function we then find the

indices where the cell equals 1:

6. We can then take the first element in our

array:

7. To convert this code into a function, we

wrap it in braces and replace the target

with α and the list with ω:

CLOJURE

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386321

Link to the students’ presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Clojure.pdf

https://dl.acm.org/doi/10.1145/3386321
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Clojure.pdf

CLOJURE | 14

Essay on History of
Clojure

Daniel Berge
University of Bergen

T
his essay summarizes the paper “A history

of Clojure” by Rich Hickey [1] presented

at the fourth HOPL conference. The pa-

per discusses the history of the language starting

from its initial design to 2019.

Brief Overview of the HOPL Pa-
per
This paper covers the background for Clojure,

and importantly why Rich Hickey decided to

make Clojure.

I chose this paper because I am
interested in functional

programming, and I have some
background in Java

programming. Therefore, a
functional programming

language that runs on JVM
caught my interest. I had some

experience with functional
programming, due to courses

taken in my bachelors degree at
the university, but the only

functional language that was
introduced was Haskell. In

addition, I had no prior
experience or knowledge about

Lisp or dialects of Lisp, and
wanted to learn a bit about the

topic.
—Daniel

It starts with the motivation

behind Clojure, where Hickey

addresses his experience with

object-oriented languages, and

his first impressions with func-

tional languages. He has pro-

fessional experience with C++,

Java and C# and categorizes

himself as a information sys-

tems programmer.

The next part of the paper

is Clojure’s initial design and

implementation phase. He

started working on Clojure in

2005 and did all of the early

work by himself, he later open-

sourced the project and re-

leased its first version in 2007.

The paper also covers his de-

sign choices for the language

according to Lisp, including

the similarities and differences.

The evolution of Clojure is a big part of the pa-

per, as this is the history of how it turned out

to be the language it is today. The author goes

through each of the versions released, and covers

his choices of features and implementation de-

tails. He includes everything from its first release

of Clojure 1.0 to 1.10 which was released in 2019,

and his focus into the future.

In the retrospective the author reflects on the lan-

guage, its use by others, and feedback from the

community, which helped Hickey form the lan-

guage. The community helped with support, bug

fixes and some implementation work in the later

years. Big parts of the community comes from

object-oriented languages, many from java, as

Clojure is hosted on JVM. They found that Clo-

jure is a great language for them to code better

applications and systems.

Lastly, the author covers the adoption and user

success, there are several success stories of great

success with Clojure. It has become a respectable

language and it is being used in hundreds of com-

panies across the world. Not only Clojure itself,

but also bi-products such as ClojureScript, Clo-

jureCLR and Datomic.

Brief Overview of Clojure
Clojure is a dialect of Lisp, it is a functional lan-

guage suitable for professional use. The objective

of Clojure is to be a programming language that

is as acceptable as popular languages as C# and

Java, but functional and with a simpler program-

ming model [1]. It has features like pure func-

tions, immutable data structures, concurrency-

safe state management and more.

As Clojure is a Lisp, it has benefits like code is

data: “a Lisp program is defined in terms of the

interpretation of its core data structures, rather

than by a syntax over characters” [1], like other

languages. It also has a small core language, with

syntax familiar to Lisp.

All of Clojure’s data structures are persistent and

immutable, since it is normally slow to make data

structures this way, the author used hash array

mapped tries to make them performant and us-

able. This is a path copying strategy that made

fast data structures possible. Data structures also

CLOJURE | 15

have meta-data, that make it possible to add con-

text of information to each data structure made,

without impacting equality.

Clojure is hosted, which means that it runs on

the JVM. With JVM you can interact with Java and

Java libraries, which was a big factor in Clojure’s

adoption, as there are loads of libraries written

in Java. Also debugging tools that work with Java

work with Clojure. This means that Clojure had

all the benefits of JVM from the start, such as run-

ning on many different machines and not having

to write its own runtime model.

What I liked most about the
language, is the fact that it is

hosted, and that it is possible to
use JVM libraries. This makes

the language a lot more
appealing for many people and

also for me.
—Daniel

State management in Clojure

is meant to be simple, Hickey

did not want to use complex

locks and mutex approaches,

but rather something that em-

braced and worked efficiently

with persistent immutable

data. The idea was to have a

variety of references that were

concurrency-safe [1], so user

locking was not needed, with

update semantics in synchronization and coordi-

nation. So the author designed and built an STM

around MVC.

There is support for polymorphism in Clojure,

this is done by protocols, which is named sets

of polymorphic functions: defprotocol defines

the signature and documentation of the func-

tions, without implementation; with defrecord
programmers can define new maps that include

the necessary internal type tagging to support

protocols.

The host: An Overview
“Libraries are power” [1]: they are a very impor-

tant part of programming languages, it comple-

ments the core language with a lot of extra fea-

tures, and is the most important reason for Clo-

jure being hosted.

JVM was a good fit for Clojure as the runtime

needed to be garbage collected and have high

performance mechanism like optimization for

runtime polymorphic dispatch [1]. The author

started out by making Clojure compatible with

CLR as well, but this way he had to implement

the same features twice, instead of making twice

the features. Therefore, he had to choose only

one of them. He ended up with JVM instead of

CLR because of the open source library ecosys-

tem of Java and the more dynamic nature of the

JVM.

To maximize interopability and performance,

Clojure’s types are alike host types, Clojure strings

are java.lang.Strings, nil is Java’s null, Clo-

jure vectors are Java lists, and so on. This means

that Clojure can use java.collectionmethods

with its own array types in Clojure, as they are the

same type in the host.

The biggest host construct that works directly

with Clojure is exceptions. The host implements

error handling with try-throw-catch style excep-

tions with stack unwinding. It is optimized, has

tooling and security support, which makes it

great for Clojure.

Hickey’s objective was to make Clojure portable,

so that programmers could use Clojure where it

suited each programmer. Therefore, it was im-

portant to recognize the portability of the host

itself. JVM has been extensively ported to differ-

ent operating systems and architectures [1].

In addition to the benefits for end users of the

language, it also had a lot of implementation

benefits. Not introducing a new runtime model

helped both. Implementing a new runtime

model is a lot of work; in addition, program-

mers need intuition about the languages runtime,

memory and how garbage collection works to be

effective in a language. As JVM is already a fa-

miliar runtime for many people, it helps with

adoption.

CLOJURE | 16

Related Work on Clojure
There is more focus on functional programming

languages in the last two HOPL conferences, this

is because there many new functional languages

in the recent years, and their popularity has

grown. The papers that are most connected to

this paper are about Lisp at both HOPL I and

HOPL II, as Clojure is a newer dialect of Lisp.

A good resource to learn more about the topics of

this paper, is by watching Rich Hickey’s talks. He

has some interesting and popular talks, where he

talks about e.g. concurrency and state. One of his

most popular talks is one from JVM Languages

Summit in 2009 called Are we there yet? [4], where

he talks about object oriented languages, func-

tional programming, types, state and more.

Another important talk is Simple Made Easy from

the Strange Loop Conference in 2011 [3], which

is a talk that still attracts people to Clojure today.

This is a talk about simplicity and the benefits

of making programming languages and software

simple.

There are many other great talks from Hickey, and

they can be found on YouTube. He has a YouTube

channel called ClojureTV that have many videos

about Clojure [5], including Clojure talks.

Clojure has an official website clojure.org,

that consists of tutorials, API reference, guides

and news. It is a great place to start to learn about

Clojure and getting started.

Tool Support for Clojure
Personally I have not used Clojure myself, but

the community have recommended some edi-

tors and dependency managers [2]. My favorite

editors are IntelliJ, Vim and Visual Studio Code,

and there are Clojure tools for all of these and

many other editors. There is also an official CLI

tool made by the Clojure core team called clj,

which is a tool for managing dependencies, run-

ning a REPL, and running Clojure programs. In

addition, tools made by the community work as

well.

Personal Experience
I liked the evolution part of the paper a lot, it

was interesting to see how the language evolved

over the years. From the initial design when there

were few users to the last couple of years where

there are hundreds of companies using it, Rich

Hickey is still the one that does most of the im-

plementation work.

It was also interesting to see the extra products

that were made because of the language, like

Datomic and ClojureScript. What I liked most

about the language, is the fact that it is hosted,

and that it is possible to use JVM libraries. This

makes the language a lot more appealing for

many people and also for me.

Survey results showed that one that one of Clo-

jure’s weaknesses was “poor error messages and

incomprehensible stack traces” [1]. I wonder if

the author would do this differently today: while

the approach he did it was using the host im-

plementation of exceptions, maybe it would be

better to have implemented a better custom sys-

tem for the language? Another question I have,

is if he sees the language growing in the next few

years? I had never heard of this language before

this paper, and it feels like a language many more

programmers could adopt to.

References

[1] Rich Hickey, A History of Clojure, Proc. ACM Pro-
gram. Lang. 4, HOPL, Article 71 (June 2020)

[2] Community, Clojure Tools, available at: https:
//clojure.org/community/tools.

[3] Rich Hickey, Strange Loop Conference, avail-
able at: https://www.infoq.com/presenta
tions/Simple-Made-Easy/.

[4] Rich Hickey, Are We There Yet?, available
at: https://www.infoq.com/presentation
s/Are-We-There-Yet-Rich-Hickey/.

[5] Rich Hickey, YouTube channel ClojureTV, avail-
able at: https://www.youtube.com/channel/
UCaLlzGqiPE2QRj6sSOawJRg.

https://clojure.org/community/tools
https://clojure.org/community/tools
https://www.infoq.com/presentations/Simple-Made-Easy/
https://www.infoq.com/presentations/Simple-Made-Easy/
https://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey/
https://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey/
https://www.youtube.com/channel/UCaLlzGqiPE2QRj6sSOawJRg
https://www.youtube.com/channel/UCaLlzGqiPE2QRj6sSOawJRg

CLOJURE | 17

Essay on History of
Clojure

Andreas Garvik
University of Bergen

T
his essay summarizes the paper [1] by Rick

Hickey presented at HOPL Volume 4. The

paper provides insight about the moti-

vation behind the development of Clojure and

discusses various design decisions and language

constructs. It also covers the evolution of the lan-

guage, before the initial release and later versions,

adoption and community.

Brief Overview of the HOPL Pa-
per
The paper starts with Rick Hickey recounting his

background and movitation.

I chose this paper for multiple
reasons. During the fall 2020, I

got introduced to functional
programming with Haskell and I

found this programming style
quite interesting. I had previous

experience with lambda
functions in Java and

map/filter/reduce in JavaScript,
but Haskell introduced me to a

whole different way of thinking
and reasoning about programs.

It was strict and enforced a
functional style. I started to look

more into functional
programming languages and

Lisp and its dialects came to my
attention. At first, I thought the

syntax was very odd and
unreadable,——

He gives an introduction about

projects he has done in the past

and his experience in program-

ming.

He characterizes his work as

“information systems” pro-

gramming, making systems

that do something with infor-

mation about the world, us-

ing mainly C++/Java/C#. After

spending time with Common

Lisp, and experiencing a rev-

elation, he attempts bridging

Common Lisp to the JVM/CLR

and ultimately decides to make

his own language hosted on

the JVM/CLR.

Different characteristics and

features of the language in

Clojure’s initial release is pre-

sented and rationalized. The

paper lays out its evolution

from versions 1.0 through 1.10, where features

and concepts were added or revisited, in vari-

able amount and significance (notably, polymor-

phism in version 1.2 and “transducers” in version

1.7). Clojure evolved with attention to retention

of code, as Rick Hickey wanted Clojure to be a

stable language to be used professionally with

minimal deprecations and breaking changes.

In retrospective, Rich Hickey mentions that the

problem most new Clojure developers migrating

from Java, JavaScript and other object-oriented

languages faced, was not as maybe anticipated

“dealing with all those parentheses”, but rather

learning functional programming style in gen-

eral. Neither did he anticipate, after releasing

Clojure, all the invitations to give talks nor the

responsibility for stewarding the community.

The paper closes off with an overview of Clojure’s

adoption and success stories. Surveys show a

large increase of developers using Clojure profes-

sionally over the years.

Walmart and Netflix are mentioned as large busi-

nesses that develop programs written in Clojure.

He concludes that, to the extent that Clojure

was designed to allow programmers to write sim-

pler, functional programs professionally, while

developing systems for a wide variety of domains

where Java and Javascript is prominent, it has

certainly succeeded.

Brief Overview of Clojure
Clojure is a Lisp, meaning that it shares a lot of

characteristics, concepts and ideas from the fam-

ily of Lisp languages. Code is data, where the

syntax you write in the program is essentially just

the data structures itself.

For instance, a function call and its parameters is

a list. The data read / print system is separated

from compilation / evaluation, essentially the

use of data structure literals instead of language

instructions to construct the same data. Lisp lan-

guages can be very small, and Clojure has a short

syntax and few keywords.

Clojure differs from Lisp in that it has a differ-

ent basis then traditionally Lisp languages have,

CLOJURE | 18

cons cell with mutable car and cdr, instead it

uses an abstraction seq as its basis, which is an

abstraction over all collections. Clojure is also

strict and the core objective of the language to

ease programming.

——being mostly familiar with
C-like syntax, but I wanted to

learn more. Since Lisp or
functional programming in

general is not very widespread, I
didn’t get to spend time with it
an use it in school or at work. I

also came across one of Rick
Hickey’s talks about state and he

argued that it was done wrong
in object-oriented programming.

He argued that encapsulation
and mutability of object was a

total mess especially in a
concurrent and/or parallel

context. These combined made
me choose Clojure. I wanted to

learn more about Lisp in general,
Rick Hickey’s thoughts and ideas

and what Clojure had to offer.
Recalling, I read about Clojure

one time in a Stack Overflow
Survey, where it was ranked as

the highest payed programming
language. I was intrigued.

—Andreas

This is achieved by a desire to

support and ensure programs

written in Clojure consist of im-

mutable values and a set of

pure functions to apply.

Clojure is hosted on the JVM,

which means it can take advan-

tage and comsume of all the

well-developed libraries from

Java. Clojure programs are Java

libraries and bytecode when

running on the JVM. It inher-

its features such as garbage

collection and runtime poly-

morphic dispatch, but differs

greatly in state management.

Clojure’s idea was to have refer-

ences being concurrency-safe,

without requiring any locks. It

archives this with a software

transactional memory build [6]

around multiversion concur-

rency control [7]. Data struc-

ture in Clojure is immutable,

persistent and fast, thanks to

hash array mapped tries [5].

Here is a code example written

in Clojure: a factorial function.

Evaluation of programs: An
Overview
Clojure as other languages in the Lisp family

shares the same basic structure of programs as

data. The basic structure is a data structure,

or a series of data structures, no other syntax.

The data structures are the code. This means

it doesn’t matter if it comes from written in a

file or another program. When you want to turn

your text representation of a data structure on file

you invoke something that’s called the Reader.

This Reader turns the text into the respective

data structures. The data structures are in turn

handed to the compiler. This makes it very easy

for a program to provide the data structures for

a program to the compiler. One great benefit

of this that a programmer could change a func-

tion definition in a running program without

down time or loss of program state. In addition,

since the compiler is just dealing with data scruc-

tures, the possibility to extend the evaluation ca-

pabilities of the compiler with macros is enabled.

Macros give the programmer syntactic extensibil-

ity, where if you want something in the language

syntax, all you have to do is to define a macro

and when the compiler encounters it, it will look

for your definition. This is in stark contrast to

other languages that do not support macros—

one might have to wait years before a desired

language feature is added to the language. Actu-

ally, a lot of things you normally find “built-in” to

other languages are defined as macros in Clojure.

Related Work on Clojure
Before starting the work on Clojure, Rich Hickey

was wishing for a better alternative to imperative

programming on .NET and briefly mentioning

F# and how he found it insufficiently expressive.

He initially targeted both JVM and CLR, but de-

cided quite early to just work on the JVM to ac-

complish twice as much rather then do every-

thing twice. Later David Miller started a port

of Clojure back to the CLR, porting Java code to

C#, named ClojureCLR [3]. Other related work is

ClojureScript [4] which is a compiler that targets

JavaScript. A paper on Lisp and its evolution was

presented at the second HOPL Conference.

CLOJURE | 19

Tool Support for Clojure
Clojure has CLI with REPL support which make

it easy to try out, interact and play with. It also

has a VS Code plug in.

I think the things that fascinated
me about Lisp was its concise
and minimal syntax and how

one essentially just wrote data
structure literals, and had a

choice whether to evaluate the
code right away or store the

code as a data structure to be
used in the code.

—Andreas

Apart from the tool I have tried

out, the paper states that Clo-

jure had sophisticated tooling

from the start. Because it was

hosted on the JVM, it got a

lot for free. Rick Hickey im-

plemented just after the re-

lease, in 2007, emission of

the needed debug information,

which made all the Java break-

point/set debugging and profil-

ing software tools work on Clo-

jure programs. This was huge

for such a brand-new programming language.

Personal Experience
I enjoyed the most learning about Lisp concepts

and ideas. Clojure inherits a lot of the same char-

acteristics which I found very interesting.

I think the things that fascinated me about Lisp

was its concise and minimal syntax and how one

essentially just wrote data structure literals, and

had a choice whether to evaluate the code right

away or store the code as a data structure to be

used in the code. This opens up a suite of options

and flexibility where you could easily create a pro-

gram to write a program or with macros even tell

the compiler how a part of the code should be

evaluated.

I would like to ask Rick Hickey why he might

think that Lisp family languages, in particular

Clojure, or functional programming style is not

more common or the standard way of program-

ming. I would also like to ask if we had more time

developing, if he would spend it getting rid of

the JVM underneath and create a compiler or if

we would create more libraries and abstractions

on top. I find it interesting to question if one

today should not spend more time reinventing

the wheel by creating compilers or if there still is

many more aspects to research and enhance and

we have just scratched the surface. I wonder if

abstractions an reuse of existing compilers and

libraries leads to more progress in language de-

sign. This was the route Rick Hickey chose with

Clojure at least.

References

[1] Rick Hickey A history of Clojure, Proc. ACM Pro-
gram. Lang., Vol. 4, No. HOPL, Article 71.

[2] Guy L. Steele Jr, Richard P. Gabriel The evolution
of Lisp, Proc. ACM Program. Lang., Vol. 2, No.
HOPL, Chapter VI.

[3] ClojureCLR, available at: https://clojure.or
g/about/clojureclr.

[4] ClojureScript, available at: https://clojures
cript.org/.

[5] HAMT, available at: https://en.wikipedia.o
rg/wiki/Hash_array_mapped_trie.

[6] Wikipedia page on “Software transactional mem-
ory”, available at: https://en.wikipedia.org
/wiki/Software_transactional_memory.

[7] MVCC, available at: https://en.wikipedia.o
rg/wiki/Multiversion_concurrency_contr
ol.

https://clojure.org/about/clojureclr
https://clojure.org/about/clojureclr
https://clojurescript.org/
https://clojurescript.org/
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control

D

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386323

Link to the student’s presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/D.pdf

https://dl.acm.org/doi/10.1145/3386323
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/D.pdf

D | 21

Essay on History of
the D Programming
Language
Marius Kleppe Larnøy
University of Bergen

T
his essay summarizes the paper “Origins

of The D Programming Language” [1] by

Walter Bright, Andrei Alexandrescu and

Michael Parker, presented at HOPL IV. The pa-

per tells the story of Walter Bright’s work in the

compiler industry from the late 70s up to the in-

ception of the D programming language in 1999.

It then covers the development of the language

leading up to its 1.00 release in 2007.

Brief Overview of the HOPL Pa-
per
The Origins of the D Programming Language cov-

ers Walter Bright’s two decade long journey in the

compiler industry, as well as the first seven years

of development on the D language.

The reason I chose this paper is
because I was fascinated by the

bold decision to attempt to
create a successor to two of the

most widely used programming
languages in history, namely C

and C++. Drawing users from
two mature languages with

codebases decades old is no easy
task, and I was interested in

learning about what features the
D language could offer that

would make a reasonably
conservative user base of systems

developers jump ship.
—Marius

The paper uses its first few

pages to lay down the back-

ground for Walter Bright’s de-

cision to develop his own lan-

guage. How he started out as

a mechanical engineer at Boe-

ing with game development as

a hobby, who wrote his own

C compiler to improve perfor-

mance of his games, to working

full time developing and main-

taining industry grade compil-

ers for C, C++ and later Java and

JavaScript[1].

The main sections of the paper

details the first few years of de-

velopment on the Digital Mars

D compiler, Digital Mars be-

ing the company Walter founded for the project.

How it started out as a one man project and how

it grew into a sizable group of people with com-

munity driven projects. It tells the story of how

Walter Bright as the sole developer interacted

with his growing (and vocal) community, and

how his vision of the D specification not always

matched what his target demographic wanted

out of a systems programming language.

The Digital Mars D compiler version 1.00 was

released on January 2nd 2007, and with that the

paper concludes: “Any tale of origins of the D pro-

gramming language must reasonably end with

the release of version 1.00” [1].

Brief Overview of D
D is a systems and application programming lan-

guage. It has support for multiple programming

paradigms, such as procedural, object-oriented

and metaprogramming. In its current form (D2)

D has added support for functional program-

ming, as well as improved metaprogramming as

part of the core language[1].

D follows C’s "Algol-like" syntax closely, with the

intention of making it easy for C and C++ pro-

grammers to make the transition over to D. To

further cater to C-programmers D is interface

compatible with C, one of the core design goals

of D was that "a syntactical construction should

have the same semantics in D as in C, such as the

integer promotion rules, or fail to compile"[1].

Perhaps the feature that separates D from C and

C++ the most is its inclusion of a garbage collec-

tor. A controversial addition to a systems pro-

gramming language aimed at C developers, and

heavily debated on the Dlang forums[1]. Until

the addition of the @nogc function attribute in

D2, automatic memory management was a fully

embedded part of D.

D is a statically typed language[12], such that ev-

ery expression has a type and typing errors are

resolved at compile time. The language has its

own list of basic built in data types, such as nu-

meric types. In addition to the basic types, there

are also the derived data types, such as point-

D | 22

ers, functions and arrays. D also supports user-

defined types such as enums, classes, structs and

interfaces (full overview can be found in the lan-

guage specification at dlang.org).

Template mixins: An Overview
Template mixins are an extension to D’s tem-

plates. According to the paper, mixins were

first suggested to solve issues surrounding us-

ing macros in C++ to circumvent issues with

the C preprocessor in the codebase of the first

Unreal game[1]. Semantically, mixins were de-

signed to avoid the problems of the preproces-

sor, while allowing exposure of metaclass infor-

mation, i.e., passing around a classref* which

exposes static functions and constructors [1].

When the mixin keyword is prefixed to a tem-

plate instantiation, the body of the template is in-

serted into that location and takes on the scope in

which it is initialized. This is the opposite of what

happens when you initialize a template normally,

where the body takes on the scope in which it

was implemented [1].

At first glance, the motivation
behind developing a successor
to two languages such as C and

C++ can be a bit hard to grasp.
The paper does a good job in

inviting the reader into the
mindset of Walter Bright, and

getting to know his motivations
behind this decision.

—Marius

According to the specifica-

tion, “a TemplateMixin takes

an arbitrary set of decla-

rations from the body of a

TemplateDeclaration and

inserts them into the current

context” [13].

A mixin template comes

wrapped in its own scope, with

internal symbols aliased to the

external scope[1]. This allows

for multiple mixins of the same

template in the same module,

or mixins with several templates with the same

internal symbols or possibly conflicting symbol

names already in scope.

The example below from the paper highlights

the use of two mixins of the same template, with

identifiers v1 and v2 to disambiguate between

them.

Related Work on D
Related HOPL papers. Out of all the papers pre-

sented at HOPL IV, the paper on D is mainly con-

nected to Bjarne Stroustrup’s paper Thriving in a

crowded and changing world: C++ 2006-2020 [2].

As D was intended as an improvement upon C

and C++ with similar syntax to draw users already

fluent in those languages, D will inherently be

connected to the history and development of

C++.

There is one other paper from HOPL IV that has

some connection to D, and that is JavaScript: the

first 20 years [3]. The garbage collector originally

employed in the D runtime library was a repur-

posed garbage collector that Walter Bright had

written for the Chromium JavaScript implemen-

tation in 2000 [1].

Jumping back in time to the previous HOPL con-

ferences, there are some papers in particular that

stand out in regards to relevance for the D lan-

guage. For HOPL-III, Bjarne Stroustrup wrote

a paper on the history of C++ from 1991-2006,

Evolving a language in and for the real world: C++

1991-2006 [4]. This period of time is particularily

connected to the development of D as it was dur-

ing this time D was initially conceived, and the D

language’s feature set was strongly influenced by

the versions of C++ that emerged during this era.

Out of the HOPL II papers, there are three that

can be connected to D in some way. HOPL-II

was the first installment that had C++ on its list of

papers. In A history of C++: 1978-1991[5], Bjarne

Stroustrup goes into detail about the first 13 years

of C++ existence. This initial era of C++ was when

Walter Bright began working on compilers for C

https://dlang.org/spec/type.html

D | 23

and C++, most famously the Zortech C++ com-

piler [1], and it played a crucial role in his later

work on the D compiler. Dennis Richie also pre-

sented a paper on C at the conference: The devel-

opment of the C language [6].

The last papers that have some relevance to the

paper on D are the papers on ALGOL 60 [9, 8]

and ALGOL 68 [7]. This is more of an “honorable

mention” as the connection is transitive. The

term “Algol-like syntax” spread from ALGOL to

C, to C++, and finally to D, and so beyond that

direct impact ALGOL had on the development of

D is neglicable.

Related work and further reading. The full lan-

guage specification for D, as well as the docu-

mentation for the standard runtime library are

available at dlang.org [10][11].

Andrei Alexandrescu’s book The D Programming

Language[15] is recommended by the D Lan-

guage Foundation as "the definitive book on

D"[14]. One drawback of the book is that at the

time of the release in 2010 the current iteration

of D (D2) was not yet feature-complete [1], and

thus it does not cover the complete specification

of modern D.

A more recent book by Ali Çehreli published in

2016 [16] is also recommended by the D Lan-

guage Foundation. It is a comprehensive intro-

duction to the language aimed at both beginners

and more experienced programmers. It also has

the benefit of having a online version available

which receives updates as the language evolves.

Tool Support for D
The tools I decided on using for D programming

was VSCode with the code-d extension [17]. This

extension requires you to have a D compiler in-

stalled beforehand, but offers a nice suite of help-

ful tools like syntax highlighting, auto-complete

and linting. Compiling can be done from the VS-

Code editor or by running the compiler from a

terminal window. I am also aware of that there

exists a D-mode for Emacs and a D Plugin for In-

telliJ IDEA, but I have not personally tested these

out.

There is also a choice between different compil-

ers to use. DMD is the official reference compiler,

which features the latest version of D. GDC is a

GCC based D compiler which offers lots of opti-

mizations and support for a great variety of ar-

chitectures. Lastly there is LDC, a LLVM-based D

compiler, which also offers lots of optimizations.

For working on this essay I decided to use DMD

for the ease of use, but all compilers are viable

based on your needs.

Personal Experience
At first glance, the motivation behind developing

a successor to two languages such as C and C++

can be a bit hard to grasp. The paper does a good

job in inviting the reader into the mindset of Wal-

ter Bright, and getting to know his motivations

behind this decision. Once the paper reaches the

beginning of D development in the late 90s, the

daunting task seemed more like a natural step in

the evolution of C-like languages.

True to its intentions, with some knowledge

about C and C++ both reading and writing D code

is in my opinion a close to seamless transition. It

showcases a lot of well-thought-out—sometimes

subtle—changes that can take some time getting

used to, but overall an enjoyable experience.

Here are my questions to the authors of the pa-

per:

• Part of the initial motivation behind D was

that C++ was becoming exceedingly large.

With D becoming a more mature language

with support for multiple paradigms, how

to avoid D running into the same issues?

• Where do you see D in 10-20 years?

References

[1] W. Bright, A. Alexandrescu, M. Parker, Origins of
the D Programming Language, Proc. ACM Pro-
gram. Lang., Vol. 4, No. HOPL, Article 73.

[2] B. Stroustrup, Thriving in a crowded and chang-
ing world: C++ 2006-2020, Proc. ACM Program.
Lang., Vol. 4, No. HOPL, Article 70.

https://wiki.dlang.org/DMD
https://wiki.dlang.org/GDC
https://wiki.dlang.org/LDC

D | 24

[3] A. Wirfs-Brock, B. Eich, JavaScript: the first 20
years, Proc. ACM Program. Lang., Vol. 4, No.
HOPL, Article 77.

[4] B. Stroustrup, Evolving a language in and for the
real world: C++ 1991-2006, HOPL III: Proceedings
of the third ACM SIGPLAN conference on History
of programming languages, Pages 4-1–4-59.

[5] B. Stroustrup, A history of C++: 1979–1991, HOPL-
II: The second ACM SIGPLAN conference on His-
tory of programming languages, Pages 271–297.

[6] D. Richie, The development of the C language,
HOPL-II: The second ACM SIGPLAN conference
on History of programming languages, Pages 201-
208.

[7] C. H. Lindsey, A History of ALGOL 68, HOPL-II:
The second ACM SIGPLAN conference on His-
tory of programming languages, Pages 97-132.

[8] A. J. Perlis, The American side of the development
of Algol, ACM SIGPLAN Not. 13, 8, pp 3-14.

[9] P. Naur, The European side of the last phase of the
development of ALGOL 60, ACM SIGPLAN Not. 13,
8, pp 15-44.

[10] D Lang Foundation, The D Language specifica-
tion, available at: https://dlang.org/spec/s
pec.html.

[11] D Lang Foundation, Phobos Runtime Library,
available at: https://dlang.org/phobos/ind
ex.html.

[12] D Lang Foundation, Types, available at: https:
//dlang.org/spec/type.html.

[13] D Lang Foundation, Template Mixins, avail-
able at: https://dlang.org/spec/template-
mixin.html.

[14] D Lang Foundation, Books, available at: https:
//wiki.dlang.org/Books.

[15] A. Alexandrescu, The D Programming Language,
Addison-Wesley Professional, 2010. ISBN-13: 978-
0321635365.

[16] A. Çehreli, Programming in D, Ali Çehreli, 2016.
ISBN-13: 978-0692599433. Available at: http:
//ddili.org/ders/d.en/index.html.

[17] Webfreak, D Programming Language(code-d), ht
tps://github.com/Pure-D/code-d/wiki.

https://dlang.org/spec/spec.html
https://dlang.org/spec/spec.html
https://dlang.org/phobos/index.html
https://dlang.org/phobos/index.html
https://dlang.org/spec/type.html
https://dlang.org/spec/type.html
https://dlang.org/spec/template-mixin.html
https://dlang.org/spec/template-mixin.html
https://wiki.dlang.org/Books
https://wiki.dlang.org/Books
http://ddili.org/ders/d.en/index.html
http://ddili.org/ders/d.en/index.html
https://github.com/Pure-D/code-d/wiki
https://github.com/Pure-D/code-d/wiki

F#

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386325

Link to the student’s presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/F-sharp.pdf

https://dl.acm.org/doi/10.1145/3386325
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/F-sharp.pdf

F# | 26

Essay on The Early
History of F#

Kenneth Fossen
University of Bergen

T
his essay summarizes the paper “The Early

History of F#” [3] by Don Syme [4] pre-

sented at the HOPL IV. The paper dis-

cusses the historical summary for how the F#

language was created, and how the early days

functional programming (FP), and Don Syme’s

personal experience with FP influenced F#’s de-

sign and implementation.

Brief Overview of the HOPL Pa-
per

I choose this paper for a few
reasons. I’ve been experiencing

functional programming
through other courses at

University in Bergen [5, 7], and
have been enjoying the new way

of thinking and the
Hindley-Milner type-inference

magic [6]. I’ve also been curious
to transfer this knowledge from

my courses where I’ve been using
functional programming, into

my part-time job, where we
mainly work in the imperative

language C# and .NET
environment. This HOPL paper

would give me a good
introduction to the language,

enable learn it by using it,——

The HOPL paper "The early

history of F#" [3] is journey

of strongly typed functional

programming languages in the

early 80’s to the creation of F#

in late 2001 and inclusion of

.NET Generics in 2005.

In this period, it covers briefly,

what the basis of functional

programming is, and how this

inspired the paper Why no one

uses functional programming

by Philip Wadler [8]. As Syme

mentions, “the paper was cen-

tral to my understanding of the

programming language land-

scape” [3, p. 9] when he entered

Microsoft Research in 1998.

The rise of object-oriented pro-

gramming (OO) that lead to

Wadler and Odersky with a mis-

sion to integrate specific technical features asso-

ciated with strongly typed functional languages

into “mainstream” OO languages [3, p. 9] then

formed the creation of Pizza programming lan-

guage. This later led to generics being incorpo-

rated in Java, and later influenced Syme’s work

on .NET Generics [9]. This was an important in-

clusion in .NET as it shaped parts of F#.

In 2003, 0.5 version of F# was released, but it

didn’t get much attention before the version 1.0

in 2005. From 2001 to 1.0, there were added a

many features and the language matured. Many

of the early inclusions in F# 1.0 are today the most

beloved features of the language. The Pipeline

operator is one of the popular features that was

added early in the language. Later Units-of-

Measure and Type Providers were added, to men-

tion some.

In the period 2005 → 2020, the paper covers the

evolution of F#, and how the industry changed

and how Microsoft had to adapt to this. F# got

a new dawn with becoming open source, and

cloud computing was on the rise where it played

a central part.

Syme also takes us through some language mis-

takes [3, p. 51] that in retrospective should not

have been added to the language. Here he men-

tions, for example, the Back piping operator and

he discusses his early F# decision about not in-

cluding, an oft-requested feature in F# at present

time, type classes that originates from Haskell.

Brief Overview of F#
F# is a strongly typed functional programming

language that has been heavily inspired by

OCaml [16]. It started out as a project getting

OCaml to run on .NET, but there was resistance

in the Microsoft Research community: “So, why

do we really need a .NET port of OCaml? OCaml

is working fine on Windows, and on many other

OS” [3, p. 16]. But the author decided to write F#

from scratch and port the core of OCaml to target

.NET. It is strongly typed through their own imple-

mentation of Hindley-Milner that works together

with .NET Generics. It comes as a part of .NET

SDK since 2010, and has a rich REPL through

dotnet fsi that supports F# Scripting. Other

tools are mentioned in section Tool Support for

F# | 27

F# of this essay.

Popular features of F# is Units-of-Measure [17],

Active Patterns [18], Type Providers and Quota-

tions [19].

——and get to understand how
functional and imperative

programming can interoperate
in the same code base in the

.NET SDK [15]. If I were to get to
use functional programming in
my current workplace that does

.NET, this interop between C#, F#
and .NET seems like the likely

way of letting this happen, and
hopefully we could harvest the

best of both worlds in the
software development team.

—Kenneth

Units-of-Measure is type-safety

for metrics. If two measures are

incompatible, you can’t sum

them, for example. This also re-

moves any doubt about what

metric this number is repre-

senting in your code. A popular

example for this is NASA’s Mars

Climate Orbiter that failed due

to a confusion between new-

tons and pound force [20].

Active Patterns allow for partial,

complete and multi-case pat-

terns, and make it easy to cre-

ate new patterns and use them.

Syme’s example is parsing Int
and Bool: let (|Int|_) str = ... [3, p. 29].

Quotation is used for metaprogramming [22] in

F# with Abstract-Syntax Tree’s (AST) [21] and can

be used to generate code or work with language

creation in F#.

Type providers is a feature that gives strongly

typed data sources, e.g., for working with JSON

or Databases.

I look forward to try to
incorporate this language into

my work, and here I believe
Units-of-Measure is a big thing

we could benefit from.
—Kenneth

NuGet [23] is the package man-

ager for .NET projects for C#

and F#, and since F# is deliv-

ered through .NET SDK, you

can add any new NuGet packet

and start using these libraries

in your code; it doesn’t matter

if it is written in C# or F#. This

goes also the other way.

Pipe operator: An Overview
It became a favorite instantly as it made me able

to chain together several commands, letting it

pass on the parameters from one to the next, and

at the same time increased the readability. The

operator is is just a triangle symbol |>, that has

the definition, where f is a function and x is a

parameter.

From my experience with Haskell, I’ve come ac-

customed to reading from right to left in these

cases, but this swap, made it intuitive and easy

to read from left to right and following the logic.

It’s also extendable to ||> (two) and |||> (tree

parameters) to pass on to the next. Here is a an ex-

ample from the paper comparing F# style chain-

ing with |> with Haskell style using F#.

The pipe operator also comes with a backward

pipe operators, <|, <|| and <|||. It is not rec-

ommended to use the backward operator, since

it doesn’t add readability for the user. Here comes

an example we still use the backward pipe opera-

tor: in this case we cannot chain more backward

operators, due to the nature of left-to-right as-

sociating for the operator that is inherited from

OCaml.

Related Work on F#
From the first HOPL in 1978, to the HOPL IV in

2020, there has been a few contributions that link

to this paper. At HOPL I, the History of LISP [27] is

F# | 28

of interest as F# builds in these ideas that was in-

corporate into LISP. At the HOPL II, there was also

a new contribution with regards to LISP, called

The evolution of LISP [26]. After this we can men-

tion A history of Haskell: being lazy with class [11]

that has influenced F# design choices and is a

very popular functional programming language

in academia. Among HOPL IV papers, we can

mention The History of Standard ML [25] that

was a direct competitor to F# running on .NET

with SML.NET port but never became anything

of, and lastly A History of Clojure [24] that is a

functional dialect of LISP interacting with Java

that is sharing some of the same ideas of F#.

Related work that paved the road for F# to in-

tegrate with .NET is the authors work on .NET

Generics. [9]. Besides this, fsharp.org is a good

starting place for more information about the

language itself, community and many other re-

sources. One part of this website is the Aca-

demic Papers page that contains a list of aca-

demic publications that could be of interest for

the reader to study up on. Furthermore, you

can follow their work on the GitHub account

github.com/fsharp.

Tool Support for F#
The great thing about F# is that is runs every-

where the .NET SDK [15] is installed. This means

you can use dotnet too that comes with the .NET

SDK to create projects. But this is not the only

way to use F#. It is easy to follow F# guides on

Microsoft’s web pages [12] with F# Scripting (.fsx)

and use either VSCode [13] or your favorite ed-

itor. VSCode supports the community created

Ionide extention [10] that gives good language

support for F#. The REPL that follows .NET SDK,

I found not useful and I would stay away from

it, due to its cumbersome addition of double ;;
for commands and other quirks from the OCaml

notation. I mainly used VSCode with Ionide, but

I will also highly recommend JetBrains Rider [14]

with .NET development.

Personal Experience
In the paper, I really enjoyed how Don Syme took

us through the history from the early 70’s of FP

to the inspiration for how and why F# was cre-

ated. It was exciting to see what inspired and

what other languages influenced Syme before he

created this language. My limited use of the lan-

guage has shown me a positive side of the F# lan-

guage, though I struggle some with things, when

moving from Haskell world. I look forward to try

to incorporate this language into my work, and

here I believe Units-of-Measure is a big thing we

could benefit from.

One of the things I struggle with in F# was getting

going, F# Scripting is one thing, modules and

projects are another. Why can’t we just use them

straight up as we can in Haskell? Since C# puts

a lot of restrictions on how they did things in F#,

I’m curious to ask, how the author would have

seen F#’s if it wasn’t so tied to C# and their de-

velopment? Also, the author mentions that Span
helped iron out some minor problems since F#

2.0. Are there other aspects of C# and/or .NET

that is hindering F# move in the direction that

would make F# more adaptable and usable?

References

[1] S. Ratnakumar, A brief F# exploration. Avail-
able at: https://notes.srid.ca/fsharp-e
xploration.

[2] Bolero: F# in WebAssembly. Available at: https:
//fsbolero.io/.

[3] D. Syme, The early history of F#, Proceedings of
ACM on programming languages: 4. 2020.

[4] Wikipedia page on “Don Syme”. Available
at: https://en.wikipedia.org/w/index.p
hp?title=Don_Syme&oldid=1003588951.

[5] INF222: Programmeringsspråk / Programming
Languages, University of Bergen. Link: https:
//www.uib.no/en/course/INF222.

[6] Wikipedia page on “Hindley–Milner type system”.
Available at: https://en.wikipedia.org/w
/index.php?title=Hindley%E2%80%93Milne
r_type_system&oldid=1016004296.

[7] INF122: Funksjonell programmering / Functional
Programming, University of Bergen. Link: https:
//www.uib.no/en/course/INF122.

[8] P. Wadler, Why no one uses functional languages,
SIGPLAN Notices 33:8. 23–27. 1998.

https://fsharp.org
https://fsharp.org/teaching/research.html
https://fsharp.org/teaching/research.html
https://github.com/fsharp
https://notes.srid.ca/fsharp-exploration
https://notes.srid.ca/fsharp-exploration
https://fsbolero.io/
https://fsbolero.io/
https://en.wikipedia.org/w/index.php?title=Don_Syme&oldid=1003588951
https://en.wikipedia.org/w/index.php?title=Don_Syme&oldid=1003588951
https://www.uib.no/en/course/INF222
https://www.uib.no/en/course/INF222
https://en.wikipedia.org/w/index.php?title=Hindley%E2%80%93Milner_type_system&oldid=1016004296
https://en.wikipedia.org/w/index.php?title=Hindley%E2%80%93Milner_type_system&oldid=1016004296
https://en.wikipedia.org/w/index.php?title=Hindley%E2%80%93Milner_type_system&oldid=1016004296
https://www.uib.no/en/course/INF122
https://www.uib.no/en/course/INF122

F# | 29

[9] D. Syme, ILX: Extending the .NET Common IL for
Functional Language Interoperability. Electronic
Notes in Theoretical Computer Science 59:1. 53–
72. 2001.

[10] Ionide. Link: https://ionide.io/.

[11] P. Hudak, J. Hughes, S. Peyton Jones, P. Wadler,
A history of Haskell: being lazy with class. ACM
SIGPLAN HOPL III. 2007.

[12] P. Carter, Get started with F#. Available at:
https://docs.microsoft.com/en-us/dot
net/fsharp/get-started/.

[13] Visual Studio Code - Code Editing. Redefined.
Available at: https://code.visualstudio.co
m/.

[14] Rider: The Cross-Platform .NET IDE from Jet-
Brains. Available at: https://www.jetbrains.
com/rider/.

[15] T. Dykstra, .NET SDK overview. Available at:
https://docs.microsoft.com/en-us/dot
net/core/sdk.

[16] OCaml – OCaml. Link: https://ocaml.org/.

[17] P. Carter, Units of Measure - F#. Available at:
https://docs.microsoft.com/en-us/dot
net/fsharp/language-reference/units-
of-measure.

[18] P. Carter, Active Patterns - F#. Available at:
https://docs.microsoft.com/en-us/dot
net/fsharp/language-reference/active
-patterns.

[19] P. Carter, Code Quotations - F#. Available at:
https://docs.microsoft.com/en-us/dot
net/fsharp/language-reference/code-q
uotations.

[20] Wikipedia page on “Mars Climate Orbiter”.
Available at: https://en.wikipedia.org/w/i
ndex.php?title=Mars_Climate_Orbiter&o
ldid=1016599571.

[21] Wikipedia page on “Abstract syntax tree”. Avail-
able at: https://en.wikipedia.org/w/ind
ex.php?title=Abstract_syntax_tree&old
id=1016693387.

[22] Wikipedia page on “Metaprogramming”. Avail-
able at: https://en.wikipedia.org/w/ind
ex.php?title=Metaprogramming&oldid=101
7521092.

[23] J. Douglas, What is NuGet and what does it do?.
Available at: https://docs.microsoft.com/e
n-us/nuget/what-is-nuget.

[24] R. Hickey, A history of Clojure. Proceedings of
ACM on programming languages: 4. 2020.

[25] D. MacQueen, R. Harper, J. Reppy, The history of
Standard ML. Proceedings of ACM on program-
ming languages: 4. 2020.

[26] G. L. Steele, R. P. Gabriel, The evolution of Lisp.
SIGPLAN Notices: 28. 231–270. 1993.

[27] J. McCarthy, History of LISP. SIGPLAN Notices:
13. 217–223. 1978.

https://ionide.io/
https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/
https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://docs.microsoft.com/en-us/dotnet/core/sdk
https://docs.microsoft.com/en-us/dotnet/core/sdk
https://ocaml.org/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/active-patterns
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/active-patterns
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/active-patterns
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/code-quotations
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/code-quotations
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/code-quotations
https://en.wikipedia.org/w/index.php?title=Mars_Climate_Orbiter&oldid=1016599571
https://en.wikipedia.org/w/index.php?title=Mars_Climate_Orbiter&oldid=1016599571
https://en.wikipedia.org/w/index.php?title=Mars_Climate_Orbiter&oldid=1016599571
https://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=1016693387
https://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=1016693387
https://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=1016693387
https://en.wikipedia.org/w/index.php?title=Metaprogramming&oldid=1017521092
https://en.wikipedia.org/w/index.php?title=Metaprogramming&oldid=1017521092
https://en.wikipedia.org/w/index.php?title=Metaprogramming&oldid=1017521092
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget

GROOVY

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386326

Link to the students’ presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Groovy.pdf

https://dl.acm.org/doi/10.1145/3386326
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Groovy.pdf

GROOVY | 31

Essay on History of
Groovy

Jenny Strømmen
University of Bergen

T
his essay summarizes the paper “A history

of the Groovy programming language”

[1] by Paul King presented at HOPL IV.

The paper discusses the history of how Groovy

was made, its important features and how the

language have evolved.

Brief Overview of the HOPL Pa-
per
The first section of the paper covers the language

vision and who it is meant for.

In a previous job I used Groovy to
write tests in, and specifically I

used Groovy with Spock. This
allows you to write tests with

method names as a string, and
create easier behaviour tests with

a built in "given, when, then".
[2] This makes the tests much

clearer and easier to read.
Though I did not use Groovy that
much, it was easier an less rigid

to create objects to test because of
the dynamic typing. Having

developed a lot in Java and felt
the frustration that some things

has very complicated code in
comparison to, for example,

Python, I wanted to learn more
about the Groovy language.

—Jenny

Section 2 describes how it got

to the first version, how it got

inspired by other languages

and the similarities and dif-

ferences between Groovy and

Java.

Furthermore, it looks at some

interesting aspects of the lan-

guage at section 3, describ-

ing different features like op-

erator overloading, command

chains, how you can customise

the compiler and so forth. In

section 4 we get to know how

Groovy was hosted throughout

the years, how the repository

technology was changed and

how it affected code contribu-

tion. Here also sponsors and

contributors are mentioned.

Section 5 talks about Groovy’s

main changes and changes in

the library during the development. It starts at

Groovy 1.5 and ends at Groovy 4.0. At the end

of the section the author mentions some lessons

learned, and what could be done better. In this

section, the author discusses the new features

in the different versions, like abstract syntax tree

transformation (ASTT) and command chains.

Further on, in Section 6, it is described how the

GDK has evolved, and in the following section

the paper goes more into detail about the ASTTs.

It describes the motivation of the implementa-

tion, what effect it has on the language and how

it strengthens the vision of having an extendable

language.

In section 8, the author discusses Java compat-

ibility, how it has evolved and lessons learned.

In the next section 9, the paper goes into detail

about the static vs. dynamic nature of Groovy,

and discusses going from a dynamically typed

language to a statically typed language. In sec-

tion 10, it points out the importance of testing,

and in section 11, we get to know how Groovy

is doing today. The last section discusses how

Groovy influenced other languages.

Brief Overview of Groovy
In August 2003, James Strachan made an an-

nouncement about what would be the start of

the Groovy language. Here he mentions that the

Java platform should have its own dynamic lan-

guage, and that it will be inspired by Python and

Jython. Furthermore, he says he wants to use

elements from Ruby, and that it should be a con-

cise language. However he is very unclear about

what the actual result will be, but he calls it a “...

Groovy new language ...” [1, p. 9].

In section 1 of the paper it is stated that Groovy

is supposed to be a better Java and should be

easy for Java developers to learn. It should re-

duce some of the complexity in Java, and make

it compatible with Java. Groovy was meant to be

a complementary language, and not a replace-

ment for Java. You should be able to write both

Java and Groovy in the same project, and choose

Groovy when you do not, for example, want static

typing. It is also meant to be better for script

GROOVY | 32

writers, and there is an example of how Groovy

can write the script much more concise then in

Java [1, Sect.1.1]. It is also argued that Groovy

is a good choice for data scientists, and creating

domain specific languages.

The language is influenced by Python as men-

tioned, and we see that strings, map and lists

are taken from Python [1, Sect.2.2]. Named pa-

rameters and collection methods are taken from

Smalltalk, and Ruby influenced the metapro-

gramming.

In my opinion, the combination
of removal of boilerplate code
and the easy creation of DSLs

improves code readability,
especially for people who have

little coding experience.
—Jenny

To begin with, Groovy had a dy-

namic nature, but as it devel-

oped, there were requests that

Groovy also had static typing.

How and if this should be done

is widely discussed in section 9

in the paper, but the conclu-

sion is that you can use anno-

tations (ASTTs) in your code to

signify if you want static typing,

with or without optimisation.

In section 3 we go into some of the features

of the language, where, among others, com-

mand chains are described. Command chains

let you write in a more natural language, and

the expression take 3 then 6 is parsed as

take(3).then(6). Another important feature

is the ASTTs, and the paper goes into more

depth about it in section 7. I will give a detailed

overview of this feature in the next section of this

essay.

Abtract Syntax Tree Transforma-
tions: An Overview
I chose to go into more depth about the ASTTs

because this feature removes a lot of boilerplate

code by creating an annotation to inject code

into the compiler, hence I believe it increases

code readability.

In [1, Sect. 7] you can read about these tranfor-

mations. Here they write that when Groovy is

compiled, the source code is transformed to an

AST, and it is here where the transformations hap-

pen. The main reason for the implementation of

this feature is to make the language extendable:

the idea is to make the programmer to be able

to extend the language to their needs. Addition-

ally, one wants to be able to add features without

actually having to change the grammar of the

language and thereby risk to make the language

overly complex.

With AST transforms you can remove boilerplate

code, for example getters and setters in a class. If

you use @Property the compiler generates these

methods for you automatically. The annotation

that I think is most interesting is the @Builder
annotation, that lets you take use of the Builder

pattern without the boilerplate code that comes

with it.

Later in the section, they represent macros for

creating annotations, to make it easier to create

them. Before macros, when you were to create

an ASTT, you had to know how Groovy code was

mapped into an AST. When using a macro how-

ever, you can customise annotations easier. Also,

there is an AST matcher that lets you write a pat-

tern match in Groovy code, matches on the AST

and can replace the match with some other code.

At the end of the section, the paper highlights

some problems related to the ASTTs. For exam-

ple, if you have @Trace that logs every method

in a class, together with @ToString that in-

jects a toString() method for this class. Then

the question is: does the toString() method

get traced as well? The answer depends: if

@ToString is before @Trace then toString()
is not traced, and the other way around, though

this is not a guaranteed behaviour.

Related Work on Groovy
As mentioned, Groovy got some inspiration from

other languages. According to the paper this

was Java, Python, Smalltalk, Ruby and some Lisp.

Also, it affected other languages, mostly Kotlin.

Smalltalk gave inspiration to Groovy about the

collection method names and the named param-

eters. HOPL II features a paper on Smalltalk [3],

where they discuss the early history of Smalltalk,

but the features are not discussed there as far as

GROOVY | 33

I can see. Also at the HOPL II conference, there

was a paper about Lisp [5], but I could not find

any more relevant articles from HOPL.

The Groovy documentation provides informa-

tion about how to getting started using Groovy,

information about the language and tools [6]. If

you want to try to use the ASTTs I would look at

the documentation found at [7]. If you want to

have a look at the domain specific languages in

Groovy, you should read [8].

Tool Support for Groovy
I have not tried using Groovy other than with

IntelliJ, you can read more about support for

Groovy at [9]. Integrating Groovy with an excist-

ing Java 11 project in IntelliJ is described, for

example, in [10]. If you are using Maven as a

build tool you could look at [11]. I would strongly

recommend to try to write tests in Groovy with

Spock, you can find a tutorial [2].

Personal Experience
I liked best the features concerning ASTTs and

command chains. Looking at the documentation

of domain specific languages (DSL) [8], you also

see that you can give properties to numbers. This

lets you write, for example, 5.hours.from.now,

which I think really enhances the understanding

of the code.

In my opinion, the combination of removal of

boilerplate code and the easy creation of DSLs

improves code readability, especially for people

who have little coding experience. An example of

this is given in [8, Sect.1], where they transform

a complicated and hard to read processing of a

string into a clean and concise piece of code. The

@Builder ASTT is lowering the threshold to im-

plement builders, which I also believe increases

the readability of code.

If I could ask any questions to the author of the

paper, I would ask him about the problem related

to conflicting ASTTs, @Trace and @ToString.

What would it take to make a guarantee that the

annotations are injected in the way that they ap-

pear in the source code? Further on I would

ask how they decided on the a b c d equals

a(b).c(d) in command chains, and if they have

discussed other possible patterns for this. At last,

I would ask if adding the static features to the

language in any way changed their relationship

to Java, if they were now seen as a more compet-

ing language rather than just complementary to

Java.

References

[1] P. King, A History of the Groovy Programming Lan-
guage. ACM SIGPLAN HOPL IV. 2020.

[2] Introduction to Testing with Spock and Groovy
| Baeldung. Link: https://www.baeldung.com
/groovy-spock.

[3] A. C. Kay, The Early History of Smalltalk. ACM
SIGPLAN HOPL III. 1996.

[4] G. L. Steele, R. P. Gabriel, The Evolution of Lisp,
ACM SIGPLAN HOPL II. 1993.

[5] G. L. Steele, R. P. Gabriel, The Evolution of Lisp,
SIGPLAN Notices 28:3. 231–270. 1993.

[6] The Apache Groovy programming language - Doc-
umentation. Link: https://groovy-lang.or
g/documentation.html.

[7] The Apache Groovy programming language - Run-
time and compile-time metaprogramming. Link:
http://groovy-lang.org/metaprogrammin
g.html#_available_ast_transformations.

[8] Domain-Specific Languages. Link: http:
//docs.groovy-lang.org/docs/latest/h
tml/documentation/core-domain-specif
ic-languages.html.

[9] Groovy | IntelliJ IDEA. Link: https:
//www.jetbrains.com/help/idea/2021
.1/groovy.html.

[10] Getting started with Groovy and Java 11 project.
Link: https://www.jetbrains.com/help/i
dea/getting-started-with-groovy-java
-9-project.html.

[11] Integrating Groovy into Java Applications | Bael-
dung. Link: https://www.baeldung.com/gro
ovy-java-applications.

https://www.baeldung.com/groovy-spock
https://www.baeldung.com/groovy-spock
https://groovy-lang.org/documentation.html
https://groovy-lang.org/documentation.html
http://groovy-lang.org/metaprogramming.html#_available_ast_transformations
http://groovy-lang.org/metaprogramming.html#_available_ast_transformations
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
https://www.jetbrains.com/help/idea/2021.1/groovy.html
https://www.jetbrains.com/help/idea/2021.1/groovy.html
https://www.jetbrains.com/help/idea/2021.1/groovy.html
https://www.jetbrains.com/help/idea/getting-started-with-groovy-java-9-project.html
https://www.jetbrains.com/help/idea/getting-started-with-groovy-java-9-project.html
https://www.jetbrains.com/help/idea/getting-started-with-groovy-java-9-project.html
https://www.baeldung.com/groovy-java-applications
https://www.baeldung.com/groovy-java-applications

JAVASCRIPT

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386327

Link to the students’ presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/JavaScript.pdf

https://dl.acm.org/doi/10.1145/3386327
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/JavaScript.pdf

JAVASCRIPT | 35

Essay on History of
JavaScript

Kathryn Frid
University of Bergen

T
his essay summarizes the paper [1] by

Allen Wirfs-Brock and Brendan Eich pre-

sented at the HOPL IV conference. The

paper discusses the history and evolution of

JavaScript over its first 20 years. It goes over its

birth and initial standardization. The two at-

tempts to evolve the language to ECMAScript

4, the process after both of these attempts fail,

and how the language moved past these failed

attempts.

Brief Overview of the HOPL Pa-
per
The paper goes over the birth of JavaScript, its

early evolution, the numerous attempts around

the 2000s at evolving the language, and where

the language eventually went ten years later.

I wanted to cover JavaScript as it
is a language I already knew had

an interesting story. It is also a
language I find interesting

because of how dynamic and free
form it is. There is rarely a need

to add an entirely new concept to
JavaScript, as the concepts it
posses are flexible enough to

encode new ideas using old ones.
I had already over the past year

been writing more and more
JavaScript when I chose this

topic, so it felt like a good and
exciting choice.

—Kathryn

It starts with why Netscape cre-

ated JavaScript and some of its

early evolutions. After this, a

large part of the paper goes

over the complicated process

of creating ES4, which never

succeeded. It goes into de-

tail about what factions and

companies wanted at the time

and why. It then goes over

many of the language changes

that eventually landed in ES5

and ES6/ES2015. Included

here are the thoughts that went

into them, potential discus-

sions over how the features

would work, and problems un-

covered as they were imple-

menting the features.

The paper goes into extra detail about what ES4

was intended to be and why many TC39 mem-

bers did or did not want it, how the different

members like Mozilla, Microsoft, Adobe, IBM,

Yahoo, Apple, and others viewed the proposal,

what they liked, and what they did not like. Af-

ter ES4 failed, it shows what work was done on

ES3.1, which would later become ES5. From ES5,

the paper also goes into extensive detail about

the thoughts and internal changes that had to be

done for many of the bigger changes, like classes,

arrow functions and proxies.

Brief Overview of JavaScript
JavaScript is often called the language of the web.

It is the language that runs on almost all websites

we navigate to nowadays.

As a language, JavaScript is a scripting language

focused on objects and the properties of these ob-

jects. Properties here refer to values bound to the

object with a name or some other symbol. Func-

tions in JavaScript are also first-class values, and

developers can pass them around like all other

values.

New and this. Objects can be made in JavaScript

through object literals or the new operator.

new Object gives developers a fresh object that

can then be assigned properties as they want.

One can also get more traditional objects some

might be familiar with from a more object-

oriented background through a constructor func-

tion. A constructor function is like any other

function, but it is usually capitalized and assigns

values to this in its body. Using this construc-

tor function with new then gives a new object

with the function called on the object. For exam-

ple, new Foo(4, 3) creates a new object using

a function Foo and passing 4 and 3 to Foo as ar-

guments.

Functions and this. Functions can also be set as

properties on an object. When they are prop-

erties and an object like this, and are called

as part of accessing the object (for example,

foo.bar()), they have access to the object they

JAVASCRIPT | 36

are a part of through this. Through this mecha-

nism, JavaScript can encode methods on an ob-

ject.

JavaScript has always been more
than just a thing browsers use,
even though that is where we

find it most often.
—Kathryn

Prototypes. JavaScript also has

a way to share properties be-

tween many instances from the

same constructor function us-

ing the prototype property on

the constructor function. All

instances from a constructor

function share all properties

set on the prototype of the constructor function.

This is how JavaScript achieves a form of inheri-

tance.

Object literals and destructur-
ing: An Overview
One place where JavaScript shines is creating

and breaking down structured data from and to

smaller pieces. It does this through object literals

and destructuring.

Object literals. Object literals let the develpoper

create a new JavaScript object from existing val-

ues in a declarative way. If the name of a property

in the object literal and the name variable the

value comes from are the same, then specifying

the property’s name is optional. There is also a

more concise syntax for defining a function in

an object literal, where the function keyword

is removed, and the arguments are added to the

name binding itself.

Destructuring. Destructuring lets you break

down an object into smaller pieces, taking only

what you need. It is in many ways similar to a

pattern match seen in functional languages, al-

though it doesn’t have an as defined failed state.

If the pattern doesn’t match, the values are just

undefined.

Destructuring uses a syntax similar to object

literals but on the opposite side of the equals

sign. Values can be explicitly bound to a different

identifier by using objProp: myVarName, where

objProp is the property’s name in the object, and

myVarName is the name one desires to bind it to.

Leaving the property name out binds the variable

to the property of the same name. A default value

can be given to a binding in case the object does

not have a property with the given name using

prop = default [3].

Putting these two features together, developers

can write concise and understandable code that

transforms values in many different ways.

Related Work on JavaScript
There are not many other HOPL papers with a

definitive link to the paper covered in this es-

say. However, one which might pique some in-

terest is the HOPL III paper on the Self program-

ming language [2]. Self was an inspiration to the

JavaScript prototype object model.

For more information about JavaScript as a lan-

guage as it exists today, then check out the MDN

Web Docs. Here web developers can find infor-

mation on JavaScript features and the language

itself and many other nice things to know when

doing web development.

To get more involved in the development of

JavaScript as a language today, check out the

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/

JAVASCRIPT | 37

TC39 Discourse forum where the language

and its specification is discussed. You can

also check out the https://github.com/tc39,

where much of the work of maintaining and de-

veloping the specification is located. The most

recently updated specification of the language,

with any finished proposals included, can be

found at https://tc39.es/ecma262/.

Tool Support for JavaScript
There are many ways to try JavaScript. The easi-

est way is to open up the browser console (often

F12) and write stuff. JavaScript comes with all

modern browsers, so there is no need to install

anything for small experimentation. Browsers

come with many features you would often find

in an IDE, like a debugger. For more extensive

development, I personally find WebStorm to be

a nice IDE, but many also use VS Code. For not

running code in the browser, installing Node.js

is the most common approach. It allows both

running JavaScript from the command line and

serves as a REPL.

For more extensive development in JavaScript,

a package manager like npm or Yarn is recom-

mended. A package manager handles download-

ing packages as independent modules that devel-

opers can include in scripts. Having a bundler

like WebPack can also be helpful to make work-

ing with different modules easier. A bundler also

helps with working with different web technolo-

gies, like different languages (SCSS, TypeScript),

process images, handle frameworks, linting, and

more.

Personal Experience
There are two big things I really found interest-

ing that I learned in the paper. The first is how

what we often tell each other through "cultural

osmosis" about JavaScript is not quite what is ac-

tually true. One big example of this is server-side

JavaScript. Before this paper, I always thought of

that as both a modern thing and a Node.js thing.

In truth, server-side JavaScript has always been

a thing from the very beginning. JavaScript has

always been more than just a thing browsers use,

even though that is where we find it most often.

The second thing is how revolutionary JavaScript

seems to have always wanted to be. It might not

always have managed to reach that height, but it

never stopped trying. Many of the ideas around

ECMAScript 4, for example, are things TypeScript

is still trying to figure out now 20 years later.

One thing I think would be interesting to hear a

bit more about from the paper is how stuff has

progressed after ECMAScript 2015 was released.

How is the process still going, and are there other

interesting stories to be heard? What would be

JavaScript’s future in the next five years? What

role will WebAssembly play in all of this? Will it be

the same as back when JavaScript was first con-

ceived of, where it would serve as a glue language

between Java applets?

References

[1] A. Wirfs-Brock, B. Eich, JavaScript: The First 20
Years. Proc. ACM Program. Lang. HOPL IV. 2020.

[2] D. Ungar, R. B. Smith, Self. Proceedings of the
Third ACM SIGPLAN Conference on History of
Programming Languages (HOPL III). 2007.

[3] MDN Web Docs, Destructuring assignment.
Available at: https://developer.mozilla.or
g/en-US/docs/Web/JavaScript/Reference/
Operators/Destructuring_assignment.

https://es.discourse.group/
https://tc39.es/ecma262/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

JAVASCRIPT | 38

Essay on History of
JavaScript

Åsmund Aqissiaq Arild Kløvstad
University of Bergen

T
his essay summarizes the paper

JavaScript: The First 20 Years [1] by

Brendan Eich and Allen Wirfs-Brock pre-

sented at HOPL IV. The paper covers the history

of JavaScript from 1995 to 2015 and tells the story

of how Netscape’s browser scripting language

became one of the world’s most widely adopted

programming languages. This essay covers my

motivation for choosing Eich and Wirfs-Brock’s

paper, an overview of the history, language fea-

tures, related work, and tooling, as well as my

experience reading and presenting the paper.

Brief Overview of the HOPL Pa-
per
The paper is split into four parts. The Origins of

JavaScript covers some early web history, the de-

velopment of JS 1.0 and 1.1, and the Mocha and

SpiderMonkey engines.

I was especially interested in
JavaScript because it is a

monumentally successful
language by all metrics, and yet

has a reputation for being weird,
messy and “the worst invention

ever” [2]. I wanted to know more
about the history that lead to

this contradiction—and perhaps
learn to love JavaScript in the

process.
—Åsmund

Creating a Standard deals with

the formation of the TC39 tech-

nical committee and the cre-

ation of the first JavaScript

standards up to ECMAScript

3. Failed Reformations cov-

ers (roughly) the period 2000-

2008 when several attempts

were made to radically change

JavaScript, ultimately resulting

in the Harmony proposal. Fi-

nally, Modernizing JavaScript

tells the story of ES5 and

ES2015—in many ways the re-

sults of the Harmony work. This brief summary

follows the same structure.

Origins. In the early to mid 1990’s the World

Wide Web was becoming increasingly impor-

tant, and several companies were making web

browsers for the public. One of these compa-

nies was Netscape who in 1995 recruited Brendan

Eich to create a scripting language that would

enable interactive web pages. At the same time

Sun was marketing Java and it was decided that

Netscape would create a “little language” that

could be used to glue together larger programs

written in Java.

In 10 days in May of 1995 Eich created Mocha—

the first prototype of this little language—and

demonstrated it for Netscape. The demo was suc-

cessful and in March of 1996 Netscape Navigator

2.0 shipped with JavaScript 1.0. A year later, Navi-

gator 3.0 shipped with JS 1.1. While 1.0 was essen-

tially just the working features from the Mocha

prototype, 1.1 completed the initial definition

and development of the JavaScript language.

Around this time Microsoft were working to in-

clude JavaScript support in their Internet Ex-

plorer browser. The result was JScript – a

JavaScript implementation based on the behav-

ior of Netscape browsers. The lack of a proper

specification was a problem.

Netscape was sensitive to this criticism and

wanted to work on a specification of JavaScript.

However, Eich felt it was more important to cre-

ate a new engine since JS 1.1 was still running on

Mocha. The new engine was called SpiderMon-

key and was the basis for JS 1.2 which shipped in

1997.

The first standard. At the same time work started

on a JavaScript standard. Netscape and Sun had

initially wanted to work with the W3 consortium

or Internet Engineering Task Force, but neither

was interested in standardizing a programming

language. Instead, they landed on Ecma Interna-

tional (formerly the European Computer Manu-

facturer’s Association) which was recognized by

ISO and perceived to be sufficiently democratic.

The creation of a standard committee was ap-

proved, and in November 1996 Ecma Technical

Committee 39 (TC39) held its first meeting.

JAVASCRIPT | 39

The group started work on a specification of

JavaScript without host-specific libraries or ex-

tensions. The specification was designated

ECMA-262 and in September of 1997 ECMA-262,

1st Edition was released for publication.

Sun had licensed the name JavaScript to

Netscape and were supportive of standardization

efforts, but were protective of the Java trademark

and would not allow JavaScript as a name for

the standard. Options like LiveScript, Espresso

and EZScript were suggested, but the committee

eventually decided on ECMAScript as the perma-

nent name.

After a fast-track ISO process, a revised specifica-

tion was approved and published as ECMA-262,

2nd Edition in 1998.

Meanwhile the TC39 working group had moved

on to the extensions of the language included

in JavaScript 1.2 and JScript 3.0. Unifying and

standardizing these new elements took time, and

ECMA-262, 3rd Edition (ES3) was approved in

December 1999.

Failed Reformations. This longer process might

have been a boon, because it took nearly a

decade before ES3 was replaced by a new stan-

dard.

As early as 1998 Dave Raggett (a W3C Fellow)

had proposed sweeping changes to JavaScript

with “Spice”. This proposal included changes to

integrate JavaScript better with HTML and CSS,

as well as a classes, modules and types. At first

the proposal was not well received, but after ES3

there was interest in extending the language and

make drastic changes.

Netscape was also working on a “JavaScript 2.0”

with similar sweeping changes, and in late 1999

TC39 started work in earnest on Edition 4 (called

ES41 in the paper for reasons that shall soon be-

come apparent). This was intended to be a big

change that made ECMAScript suited for “pro-

gramming in the large” and was not necessarily

backwards compatible.

However, work was slow and concerns for

browser interoperability made difficult to imple-

ment changes.

At the same time, Microsoft announced the .NET

framework and TC39 was rechartered to work on

“Programming Environments” with ECMAScript

demoted to a Task Group. Microsoft had also won

the “browser wars” and Netscape laid off most

of its staff. In July of 2003 the working group

decided to suspend work on ES41. In hindsight

“[ES41] was too sweeping and broad for comple-

tion or adoption” [3].

A few years later Macromedia (developers of

Flash and ActionScript) had become Ecma mem-

bers, Brendan Eich was CTO of the Mozilla Foun-

dation and the use of JavaScript on the web was

booming. In late 2005 work resumed on Edition 4

(ES42 in the paper). The goal was still to support

programming in the large with type annotations,

modules and improvements, but this time back-

wards compatibility was prioritized.

Not everyone was on board with this develop-

ment. As it started to gain traction Microsoft

and Yahoo! realized these changes would be a

significant change to the web, and might be in

direct competition with larger languages like C#.

Together they proposed ES3.1 - a much more in-

cremental approach.

The changes of ES41 turned out to be difficult

to integrate and the project gradually lost sup-

port. In a 2008 Oslo meeting it was decided that

TC39 should focus on completing ES3.1 while

also working on “Harmony” – a future edition

making larger changes.

Modernizing JS. Throughout the development

of ES3.1 it became apparent that even these mod-

est update constituted a new standard. In order

to avoid confusion with the many years of work

on alternate proposals, ES3.1 was renamed and

published in 2009 as ES5.

The Harmony continued work with ES5 as a base-

line, slowly incorporating versions of features

from the previous ES4 attempts in a way that

was compatible with the new direction of EC-

MAScript. The committee adopted a “Champi-

ons” model were one person was responsible

for championing each new feature proposal. In

fitting these proposals together, they were re-

JAVASCRIPT | 40

worked to be “orthogonal” [5].

The result was ES6/2015 published in 2015. This

is the final edition discussed in Eich and Wirfs-

Brock’s article and has many of the ES41/2 pro-

posed features including classes, modules and

iterators.

Brief Overview of JavaScript
JavaScript is one of the world’s most used pro-

gramming languages. In the 2020 Stack Overflow

Developer Survey [13] JavaScript ranked first with

69% of professional developers reporting they

use it.

Reading the paper, I greatly
enjoyed all the little anecdotes

and personal touches that turn
out to have so much influence

on a language as large as
JavaScript.

—Åsmund

It is a dynamically typed,

object-oriented language with

first-class functions. The most

common use of JavaScript is

as a web scripting language,

where it runs interpreted or JIT-

compiled in browsers. How-

ever, it is also used as a server-

side scripting language.

The syntax of JavaScript is in-

tentionally C/Java-like with // or /**/ for com-

ments, curly braces for blocks and semicolons to

terminate statements. Unlike C and Java, whites-

pace can impact JavaScript semantics because of

automatic semicolon insertion.

Function Expressions: An
Overview
This section gives an overview of function expres-

sions as they are presented by Eich and Wirfs-

Brock.

Function expressions were introduced in

JavaScript 1.2 as a way to define anonymous

functions. They were included in the standard as

of ES3. Brilliantly this is done by simply making

the name optional in function declarations.

Function expressions are useful for defining func-

tions as arguments for use as callbacks or in map.

However, they can also be combined with object

literals to define classless objects that have meth-

ods.

In this example we define a 2D vector object that

contains a method for calculating its dot product

with another vector. This method is provided as a

function expression assigned to the dot attribute

of the object.

Function expressions differ from the arrow func-

tions introduced in ES2015 in that the latter does

not bind this or new. As a result arrow functions

are useful for mapping and callbacks that do not

use this, while function expressions work well

for object declarations and constructors.

The ES3 specification actually enables function

expressions to be recursive by using the callee
property of function objects, but this is no longer

supported in ES5 (and is forbidden in strict

mode).

JAVASCRIPT | 41

Related Work
This section presents some starting points for

further reading on selected topics.

Earlier HOPL papers. For more on pre-JS script-

ing languages there is William Cook’s HOPL III

paper on AppleScript [4].

For more on the concept of “orthogonal features”

there is the HOPL II paper on ALGOL 68 [5].

As a part of the ES5 specification work, property

attributes were described using Statechart, which

was presented at by David Harel at HOPL III [6].

Mocha/early JS. The very early history of

JavaScript and the development of the Mocha

prototype have been described by Brendan Eich

in blog posts [9, 10] and a podcast [11].

Browser wars. For more information about the

“Browser wars” of the early 2000s there is the

browser wars article cited by Eich and Wirfs-

Brock [7].

For a contemporary prediction of what was to

come there is this PC week article [8].

Finally the wikipedia article gives a good

overview [12].

Active Community. TC39 is still active and wel-

comes contributions. To see what they are

working on or start contributing to the EC-

MAScript standard there is the ECMA262 github

https://github.com/tc39/ecma262.

Tool Support for JavaScript
JavaScript has probably the most widely dis-

tributed REPL of any programming language

since every browser comes equipped with a JS

interpreter. By selecting the Inspect command

form the browser’s context menu, or pressing F12

and navigating to Console, it is very easy to access

an interactive console and start experimenting.

For more visual or artistic experimentation there

are options like p5.js (https://editor.p5js.
org) that include a simple library for drawing

shapes, colors and animations.

Additionally JavaScript is extremely prevalent

and your IDE of choice probably has a JS plugin.

Personal Experience
In this section I share some notes about the expe-

rience of working with the paper and the history

of JavaScript. Finally, I present some questions

for the authors.

Reading the paper, I greatly enjoyed all the little

anecdotes and personal touches that turn out to

have so much influence on a language as large

as JS. It was also interesting to follow the devel-

opment of what I would consider very “modern”

features of JavaScript all the way from the 1998

Spice proposal, through the turmoil of the oughts

and into ES5 (or not).

Additionally, I was introduced to the active work

TC39 is still doing through this paper and a guest

lecture by Yulia Startsev. The open and collabora-

tive nature of contemporary ECMA-262 develop-

ment is very exciting.

My questions are largely posed by the authors

themselves. In their conclusion they list a num-

ber of “what if”s. I am especially interested

in speculations on the wider web environment.

What if Microsoft had pursued Visual Basic in-

stead of JScript? What if Macromedia/Adobe had

pushed for ActionScript instead of participating

in ES42? What if the browser wars had gone dif-

ferently?

All of these scenarios could have had huge im-

pacts on the web of 2021, and I would be curious

to hear the speculations of the authors. Could

a different language than JavaScript have served

its purpose? What were the best- and worst-case

scenarios for the interactive web?

References

[1] A. Wirfs-Brock, B. Eich, JavaScript: The First 20
Years. Proc. ACM Program. Lang. HOPL IV. 2020.

[2] Bert Bos, JavaScript, the worst invention ever.
Available at: http://www.phonk.net/Gedach
ten/JavaScript.

[3] William A. Schulze, TG1 Convener’s Report to
TC39s. Available at: http://archives.ecma-
international.org/2004/TG1/tc39-tg1-
2004-006.pdf.

[4] W. R. Cook, AppleScript. Proceedings of the Third
ACM SIGPLAN Conference on History of Pro-
gramming Languages (HOPL III). 2007.

https://github.com/tc39/ecma262
https://editor.p5js.org
https://editor.p5js.org
http://www.phonk.net/Gedachten/JavaScript
http://www.phonk.net/Gedachten/JavaScript
http://archives.ecma-international.org/2004/TG1/tc39-tg1-2004-006.pdf
http://archives.ecma-international.org/2004/TG1/tc39-tg1-2004-006.pdf
http://archives.ecma-international.org/2004/TG1/tc39-tg1-2004-006.pdf

JAVASCRIPT | 42

[5] C. H. Lindsey, A History of ALGOL 68. The Sec-
ond ACM SIGPLAN Conference on History of Pro-
gramming Languages (HOPL II). 1993.

[6] D. Harel, Statecharts in the Making: A Personal
Account. Proceedings of the Third ACM SIG-
PLAN Conference on History of Programming
Languages (HOPL III). 2007.

[7] J. Borland, Browser wars: High price, huge
rewards. Available at: http://www.zdnet.com/
article/browser-wars-high-price-huge
-rewards/.

[8] J. Berst, Web-Wars. Available at: https://we
b.archive.org/web/20110718025042/http:
//www.well.com/user/oink/oinkxweb/snip
pets/g7-bxls/webwar3.htm.

[9] B. Eich, Popularity (blog post). Available at: http
s://brendaneich.com/2008/04/.

[10] B. Eich, New JavaScript Engine Module Owner
(blog post). Available at: https://brendaneic
h.com/2011/06/.

[11] The Origin of Javascript with Brendan Eich. Link:
https://devchat.tv/js-jabber/124-jsj
-the-origin-of-javascript-with-brend
an-eich/.

[12] Wikipedia page on “Browser Wars: First
Browser War (1995-2001)”. Link: https:
//en.wikipedia.org/wiki/Browser_war
s#First_Browser_War_(1995-2001).

[13] 2020 Developer Survey. Link: https:
//insights.stackoverflow.com/surve
y/2020/#technology-programming-script
ing-and-markup-languages-professiona
l-developers.

http://www.zdnet.com/article/browser-wars-high-price-huge-rewards/
http://www.zdnet.com/article/browser-wars-high-price-huge-rewards/
http://www.zdnet.com/article/browser-wars-high-price-huge-rewards/
https://web.archive.org/web/20110718025042/http://www.well.com/user/oink/oinkxweb/snippets/g7-bxls/webwar3.htm
https://web.archive.org/web/20110718025042/http://www.well.com/user/oink/oinkxweb/snippets/g7-bxls/webwar3.htm
https://web.archive.org/web/20110718025042/http://www.well.com/user/oink/oinkxweb/snippets/g7-bxls/webwar3.htm
https://web.archive.org/web/20110718025042/http://www.well.com/user/oink/oinkxweb/snippets/g7-bxls/webwar3.htm
https://brendaneich.com/2008/04/
https://brendaneich.com/2008/04/
https://brendaneich.com/2011/06/
https://brendaneich.com/2011/06/
https://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich/
https://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich/
https://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich/
https://en.wikipedia.org/wiki/Browser_wars#First_Browser_War_(1995-2001)
https://en.wikipedia.org/wiki/Browser_wars#First_Browser_War_(1995-2001)
https://en.wikipedia.org/wiki/Browser_wars#First_Browser_War_(1995-2001)
https://insights.stackoverflow.com/survey/2020/#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020/#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020/#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020/#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020/#technology-programming-scripting-and-markup-languages-professional-developers

LOGO

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386329

Link to the students’ presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Logo.pdf

https://dl.acm.org/doi/10.1145/3386329
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Logo.pdf

LOGO | 44

Essay on History of
Logo

Simen André Lien
University of Bergen

T
his essay summarizes the paper History of

Logo [1] by Cynthia Solomon, Brian Har-

vey, Ken Kahn, Henry Lieberman, Mark

L. Miller, Margaret Minsky, Artemis Papert and

Brian Silverman presented at the HOPL IV confer-

ence. The paper discusses the history of the pro-

gramming language Logo, its technical character-

istics, powerful ideas and influences throughout

the years. Cynthia Solomon, one of the authors

of this paper, is also one of the creators of Logo.

Brief Overview of the HOPL Pa-
per
The paper on the history of Logo covers the early

influences of the language, such as the people,

places, and its time in history.

I chose to present this particular
HOPL paper because the idea of

having a programming
language created specifically for

children sparked my interest. I
can only imagine how difficult it

must have been for children to
learn to program with the

existing programming languages
at the time since none of them

had been designed with children
in mind.

—Simen

It also covers the technical

characteristics of Logo to great

detail, such as the changed and

unchanged aspects from Lisp,

which is the language that Logo

is based on. It also contains the

creators’ reasoning for the de-

sign choices they made when

creating Logo.

Furthermore, the paper talks

about Logo before and after

personal computers. It in-

cludes reflections from one of

the creators of the language,

Cynthia Solomon, and it talks

about some of the powerful ideas that came from

the early days of Logo, such as antropomorphiza-

tion and body syntonics.

The paper goes on to talk about the 80’s and

forward, mentioning some of the hundreds of

Logo dialects that have been created. It also talks

about the design for Logo Microworlds, which

are spaces that you can think about a particu-

lar problem, and have goals that are related to

them. The most well known of Microworlds is

the turtle graphics. Additionally, the paper talks

about object-oriented programming versions of

Logo, as well as terms such as localization, which

is about translating Logo into other languages.

Localization was hugely important for Logo’s suc-

cess around the world because Logo had to be

accessible in the children’s native language in or-

der for them to use it.

Brief Overview of Logo
Logo is a programming language that was de-

signed for children to learn programming. It

was invented in 1966 by Seymour Papert, Wallace

Feurzig, Daniel Bobrow and Cynthia Solomon at

Bolt, Beranek and Newman, Inc in the USA. The

Russians had managed to send the first artificial

satellite into orbit on October 4, 1957, and this

caused USA to improve their funding for schools

all around the country, focusing especially on

education around math and science.

It was when visiting a children’s classroom that

Papert saw the need for a programming lan-

guage for children, because the programming

languages the students were using at the time

were far too complex for them. This inspired

him to create a programming language designed

specifically for children, and so the start of Logo

begun. Logo was the first programming language

created for children, and with it came a new way

of thinking about children and the way they learn.

Logo was influenced by Marvin Minsky’s AI re-

search at MIT, and by psychologist Jean Piaget’s

constructivism: the idea that people learn by do-

ing, and that they form meaning from their expe-

riences [4].

Logo’s competitors at the time, Pascal and BASIC,

were compile-then-run, while Logo had an inter-

active development model. This meant that you

could type an instruction and immediately have

LOGO | 45

it be executed, which they argued was an essen-

tial feature for children [1, p. 15]. Logo also had

automatic memory management, because they

didn’t want children to have to worry about free-

ing up memory. They argued that Logo should

be easy and intuitive to use, and that children

shouldn’t have to worry about such specifics [1,

p. 18].

Furthermore, Logo had great attention to word-

ing. Its primitives for working on lists such as car
and cdr from Lisp were named first and but-
first to be more descriptive in order to make it

easier for children to use. Another feature that

was given careful attention was error messages.

The creators of Logo didn’t want children to be

afraid of getting error messages, and so they fo-

cused on making them helpful and intuitive for

children to work with. Instead of getting error

messages such as “RangeError” or “Invalid code

point NaN”, the children got more descriptive

messages such as "I don’t know how to function

name" when calling a function that had not yet

been defined [1, p. 28].

The part that I enjoyed the most
about the paper was the

environment that they created
around children’s learning.

—Simen

Today there are hundreds of di-

alects of Logo, and Logo has

inspired many other program-

ming languages with its fea-

tures and ways of thinking.

One of the most well known

features that came from Logo

is the turtle graphics, which al-

low you to draw on the screen by moving a turtle.

Turtle graphics has since been implemented as a

library for most programming languages today.

Turtle graphics: An Overview
Historically speaking, the turtle graphics is ar-

guably the most important feature built for Logo.

It allows the user to draw on the screen by us-

ing a turtle that has attributes such as a position,

a direction and a pen. To move the turtle, you

would call commands that move the turtle rel-

ative to it’s current position and direction. The

six primitives for the turtle are FORWARD, BACK,

RIGHT, LEFT, PENUP and PENDOWN [1, p. 36]. For

instance, one could say move forward 100, or

turn right 90 degrees and the turtle would

draw while moving if the pen was down. The cre-

ators of Logo also created real life robots called

floor turtles which the students could program to

walk around on the floor, and these robots were

very popular in the early days of Logo [1, p.45]

The creators of Logo also came up with some

powerful ideas about how the students could

think about the turtle and how it would move.

Telling the turtle to move forward 100 was not

always clear for the students. What is forward? Is

it north? Is it forward in the direction the turtle

is facing? Something else? To make it intuitive

for the students, they were taught to imagine that

they themselves were the turtle. Telling the turtle

to move forward was now clear to the students,

because they themselves imagined being the tur-

tle, and now understood what forward, right, left

and back meant. Papert coined this the term

Body Syntonics [1, p. 41].

The students were also taught to think about the

turtle as someone that they could try to help, as

opposed to the turtle just being a machine that

is fully controlled by the programmer. When a

bug occurred, it allowed the students to have the

mindset of them trying to help the turtle solve the

bug, instead of putting the blame on the student

for the bug being there. All in all, turtle graphics

was a great way for children to learn and get en-

gaged with programming at the time, and today

turtle graphics is a common library for most pro-

gramming languages and is used by people of all

ages, all around the world.

Related Work on Logo
There are four different types of papers that can

be submitted to the HOPL IV conference, namely

papers that talk about one of these categories: 1)

Early History of a language, 2) Later Evolution of

a language, usually one that has already been in

a previous HOPL conference, 3) a cross-language

examination of a feature or concept, or 4) a con-

sideration of a class of languages that have a com-

mon theme or purpose [2].

LOGO | 46

The History of Logo paper talks about the early

history of Logo, and is connected to the other pa-

pers that fall into the same category. The paper

talks about the language from when it was cre-

ated through to present day, and it mentions why

certain language choices were made over others.

Some of the HOPL IV papers that are similar to

the History of Logo paper are "A history of the

Groovy programming language" and "The Early

History of F#", which both are accepted papers

to the HOPL IV conference. [3].

Here are some links to related sources if you

would like to learn more about Logo:

• Website for the Logo Foundation, which

offers workshops for teachers and more:

https://el.media.mit.edu/logo-fo
undation/.

• Learn more about Logo on this website

for the Logo foundation: https://el.m
edia.mit.edu/logo-foundation/wha
t_is_logo/logo_programming.html.

• Wikipedia article about the Logo program-

ming language: https://en.wikipedia
.org/wiki/Logo_(programming_langu
age).

• Here is an article from 2014 that was writ-

ten about Logo. It also contains links

to other resources about Logo: https:
//www.kidscodecs.com/logo-progra
mming-language/.

There are also links to many resources in the His-

tory of Logo HOPL IV paper. It has its own section

called "Logo-Related Web Sites", and it also men-

tions multiple book publications about Logo: ht
tps://dl.acm.org/doi/10.1145/3386329.

Tool Support for Logo
Here are some tools that I would recommend

checking out if you would like to try Logo.

• If you would like to download Logo, then

check out Logo Foundation’s website:

https://el.media.mit.edu/logo-fo
undation/resources/software_hardw
are.html.

• If you would like to try Logo in an online

browser, then check out this link: https:
//www.calormen.com/jslogo/#.

• Here is a great way to learn more about tur-

tle graphics in Logo: https://turtleac
ademy.com/.

Personal Experience
The part that I enjoyed the most about the paper

was the environment that they created around

children’s learning. Revolutionizing the thinking

about children’s ability to learn, and showing that

given the right tools, and pedagogical support,

children were capable of much more than previ-

ously thought. I think it is great that they opened

up the possibilities for many more children to

learn programming and start enjoying the fields

of mathematics and science.

Some of my questions to the authors of the paper

are: Did you ever think that turtle graphics would

have become such a popular feature? A question

for Cynthia Solomon that I have is, looking back,

is there something that you would have done dif-

ferently with Logo? If so, what? Another question

I have is what was some of the most interesting

things you found when gathering information to

write the paper?

References
[1] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry

Lieberman, Mark L. Miller, Margaret Minsky,
Artemis Papert, Brian Silverman, History of Logo,
Proc. ACM Program. Lang., Vol. 4, No. HOPL, Ar-
ticle 79.

[2] HOPL IV Papers, available at: https:
//hopl4.sigplan.org/track/hopl-4-p
apers#Content-Guidelines-for-Authors.

[3] HOPL IV Papers Overview, available at:
https://hopl4.sigplan.org/track/ho
pl-4-papers#event-overview.

[4] Piaget’s Theory on Constructivism, available
at: https://www.teach-nology.com/curre
nttrends/constructivism/piaget/.

https://el.media.mit.edu/logo-foundation/
https://el.media.mit.edu/logo-foundation/
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_programming.html
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_programming.html
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_programming.html
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://www.kidscodecs.com/logo-programming-language/
https://www.kidscodecs.com/logo-programming-language/
https://www.kidscodecs.com/logo-programming-language/
https://dl.acm.org/doi/10.1145/3386329
https://dl.acm.org/doi/10.1145/3386329
https://el.media.mit.edu/logo-foundation/resources/software_hardware.html
https://el.media.mit.edu/logo-foundation/resources/software_hardware.html
https://el.media.mit.edu/logo-foundation/resources/software_hardware.html
https://www.calormen.com/jslogo/#
https://www.calormen.com/jslogo/#
https://turtleacademy.com/
https://turtleacademy.com/
https://hopl4.sigplan.org/track/hopl-4-papers#Content-Guidelines-for-Authors
https://hopl4.sigplan.org/track/hopl-4-papers#Content-Guidelines-for-Authors
https://hopl4.sigplan.org/track/hopl-4-papers#Content-Guidelines-for-Authors
https://hopl4.sigplan.org/track/hopl-4-papers#event-overview
https://hopl4.sigplan.org/track/hopl-4-papers#event-overview
https://www.teach-nology.com/currenttrends/constructivism/piaget/
https://www.teach-nology.com/currenttrends/constructivism/piaget/

LOGO | 47

Essay on History of
Logo

Emily Mi L. Nguyen
University of Bergen

T
his essay summarizes the paper History of

Logo [1] by Cynthia Solomon, Brian Har-

vey, Ken Kahn, Henry Lieberman, Mark

L. Miller, Margaret Minsky, Artemis Papert and

Brian Silverman presented at the HOPL IV. The

paper discusses Logo’s background, the technical

characteristics of Logo, the historical events in

Logo’s timeline and the different perspectives on

Logo.

Brief Overview of the HOPL Pa-
per
This HOPL paper starts with an introduction and

an overview of the early influences on Logo. In

section 2 we meet Wallace (Wally) Feurzeig, Sey-

mour Papert, Jean Piaget, Marvin Minsky, Cyn-

thia Solomon and other early contributors. This

section also covers how great Logo fit in with the

time and place it was invented in.

I chose this particular HOPL
paper to present because I share
the same interest as the creators

of Logo when it comes to the
psychological and cognitive

theory of a child’s mind and way
of thinking, as well as the

evolutionary epistemology.
—Emily

Further on in section 3, this

paper dives into the technical

characteristics of Logo. It starts

with the design process, and

continues to show how Logo

differs from Lisp. Some aspects

of Logo are taken unchanged

from Lisp, while other aspects

are totally new and do not in-

herit from Lisp. Logo has no

standard, however it has some

special forms known as the Ter-

rapin and the LCSI Split. The creators also pay

a great amount of attention to how they word

themselves, on dynamic scoping and the prac-

tice of debugging, which in the early days was a

central part of Logo’s culture.

The history of Logo starts in section 4 till sec-

tion 6, presented in a chronological order. First,

in section 4 we see how Logo did before personal

computers were available for the public. Second,

in section 5 the ’80s hit and the usage of Logo in-

creased drastically now that personal computers

were available for the public. And at last, sec-

tion 6 covers the idea of a more visual program-

ming language for children in the present time.

The last three sections cover the different per-

spectives on Logo. Section 7 mentions the critical

perspectives and critiques on Logo and also how

these critiques affected negatively on the devel-

opment. Section 8 enfolds Logo’s influence on

Artificial Intelligence and computer science. We

get to see these influences through Henry Lieber-

man’s, Mark Miller’s and Ken Kahn’s reflections.

Section 9 is about the relationship between Logo

and school, and as well as how it has changed the

views on learning and teaching for both children

and teachers.

Brief Overview of Logo
Logo is known to be the first programming lan-

guage that explicitly is designed for educating

children. It was invented in 1966 and already re-

leased to the public in the following year. This

initially took place at the Bolt, Beranek and New-

man, Inc (BBN) in Cambridge, Massachusetts,

United States.

Danny Bobrow had been a doctoral student of

Marvin Minsky and Seymour Papert, and became

head of the Artificial Intelligence Group at BNN.

Bobrow was the one introducing Papert to Wal-

lace Feurzeig, and Feurzeig was in charge of a

couple educational projects. Papert then began

to consult on Feurzeig’s educational projects, and

Cynthia Solomon was at the time a member of

Feurzeig’s group as well. Papert visited several

of these educational classes and saw the need

for a better programming language designed for

children, thus the idea of designing Logo was

born. This is how all the creators of Logo met and

started their journey together.

LOGO | 48

Logo’s design is based on two theoretical frame-

works. The first one is Jean Piaget’s theory of

constructivism, which is mainly about creating

knowledge through experiences and interactions.

The second one is Marvin Minsky’s Artificial In-

telligence research at MIT. Additionally, Logic

started off basing on the early Lisp, and there-

fore became a dialect of Lisp.

Lisp was a great model for a language like Logo.

It had an interactive development model, mak-

ing Logo interactive, and not a compiled lan-

guage. This was beneficial for children when they

programmed, since they could see it being exe-

cuted immediately after typing an instruction.

Logo also inherited Lisp’s recursive functions, dy-

namic scoping of variables, symbolic computa-

tions, and operations on linked lists.

I enjoy reading the paper
knowing one of the creators of
Logo has directly taken part of

the paper and acknowledged it.
—Emily

However, Logo did not in-

herit all aspects from Lisp

unchanged. Logo was not

fully parenthesized, as well as

not every procedure returned

a value like Lisp did. Fur-

thermore, Logo was designed

around the idea of microworlds,

and one of its microworlds is the famous turtle ge-

ometry. There were lots of features and concepts

developed in Logo that Lisp did not have.

Paying Attention to Wording: An
Overview
Usually paying attention to how things are

worded in a programming language is not the

highest priority, however it is in Logo. We will

look into how they do this with assignment oper-

ators, predicates and error messages.

Different programming languages have different

ways of saving a value with a name to it. For Logo

there are at least two ways of doing it. One way

is to save a constant value, which is a value that

will not change throughout the program. As men-

tioned in the paper [1], this can be done by giving

a name to the constant value like for instance

this:

name 3.141592654 "pi

Another way is to save a value that changes dur-

ing the program. These values could be, for

instance, the value of an index in a loop that

changes for each iteration. These types of as-

signments have a value that has to be put in a

box, and this is how it is done [1]:

make "index :index+1

Predicate functions, the ones that return a

Boolean value, use some special notations in

all Lisp dialects. An operation that is supposed

to make a list containing some values is a list
operation. However, to check if a value is a list

one could use the listp operation in traditional

Lisps, although that later on became list? with

a question mark in Scheme. There was an in-

tense debate on how they should design the pred-

icate function and which of the ideas were the

most optimal ones. In short, when read out loud,

the listp with the notation "p" for "predicate"

is more audible noticeable to distinguish from

list, however other words that end with "p"

might be mistaken as the same type of notation

like for instance stop should not be pronounced

as "stow pee". In Scheme the list? was a great

design since it is visually unique and a question

mark has a lower risk of coming at the end of a

word adventitiously. The first Logo dialect even

designed a predicate function with a "q" which

naturally stood for "queue", this could be the

best design since it had both benefits from the

listp and list?, but it did not remain part of

the standard language design.

Since Logo was built to become a programming

language for children, the developers have put

a lot of thoughts into the error messages that

children would receive. In general, people with

no to little experience in programming tend to

associate errors with bad things, especially for

children this can be very discouraging. In order

to prevent that, developers reconstructed the er-

ror messages to make them more user-friendly

and understandable for the young students. Al-

ready in the 1960s Logo worked with this type of

LOGO | 49

language design. Although not all programming

languages have yet adapted this design, a few lan-

guages, for instance, Elm, Go, C++ have made

awareness and attempts to improve their error

messages.

Related Work on Logo
This paper, History of Logo, has many things in

common with the other HOPL IV papers. First of

all, HOPL IV accepts four types of papers. The pa-

per has to be either an early history of a program-

ming language, a later evolution of a program-

ming language, a close look into a cross-language

that focuses on a specific feature or concept, or a

whole class of languages with a common theme

or motive [2]. This paper falls under the category

as an early history paper, therefore will also have

some similarities in content to the other papers

in the same category, like for instance A history

of MATLAB [3] or The history of Standard ML [4].

Second, Lisp is among one of the oldest high-

level programming languages, thus has served as

a model for many programming languages later

on. This HOPL paper explains how Lisp has in-

fluenced Logo and initially shaped Logo in the

early stages. Besides, Logo is not the only dialect

of Lisp. There is a HOPL IV paper about the pro-

gramming language Emacs Lisp. Emacs Lisp got

invented in 1985, and can be argued to be one of

the most widespread language of Lisp dialects [5].

Another Lisp dialect that is part of the HOPL IV

papers is Clojure. Clojure did not appear before

in 2007 and interoperates with Java [6].

There are several Logo-related web sites and a

good deal of Logo books for further reading. The

Daily Papert [7] is a web site dedicated to Sey-

mour Papert’s work run by Gary Stager. Another

web site is the Logo Foundation [8] that offers

educational support and resources for teach-

ers, parents, students and anyone interested in

Logo. Mindstorms is among Papert’s most note-

worthy books [9]. Other great books from Papert

are The Children’s Machine [10] and The Con-

nected Family [11].

Tool Support for Logo
There are many tools available online for trying

Logo. Personally, the few I have encountered that

I recommend are the Logo Interpreter

(https://www.calormen.com/jslogo/), On-

line Logo

(https://www.transum.org/software/Log
o/) and a web site that teaches you how to

get started with Logo and about programming

principles in general called Turtle Academy

(https://turtleacademy.com).

Personal Experience
This paper has given me much insights into

Logo’s History. Personally, what I liked the most

is the fact that Cynthia Solomon is one of the

authors of this paper. I enjoy reading the paper

knowing one of the creators of Logo has directly

taken part of the paper and acknowledged it.

What I also find extremely interesting is how the

creators of Logo focus on children’s knowledge

and development. Seymour Papert was heavily

influenced by Jean Piaget, and they both believed

that children were more than just empty minds

ready to be filled with knowledge [1]. Children

are small builders of knowledge, they just think

differently, and the creators wanted to enhance

that and take children’s way of thinking more se-

riously.

I do not have much questions for the authors of

the paper, though there are some. The children

that spent time with Logo instead of normal cur-

riculum in school, how are they now? Did they de-

velop better computational thinking skills than

the children who did not participate in the ex-

periment? It would be great if teaching children

programming early on proved to turn out more

skilled than children who were not exposed to

programming.

References

[1] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry
Lieberman, Mark L. Miller, Margaret Minsky,
Artemis Papert, and Brian Silverman, History

https://www.calormen.com/jslogo/
https://www.transum.org/software/Logo/
https://www.transum.org/software/Logo/
https://turtleacademy.com

LOGO | 50

of Logo, Proc. ACM Program. Lang., Vol. 4, No.
HOPL, Article 79.

[2] The Program Committee, HOPL IV, available
at: https://hopl4.sigplan.org/track/ho
pl-4-papers#Content-Guidelines-for-Au
thors.

[3] Moler Cleve and Little Jack, A History of MATLAB,
Proc. ACM Program. Lang., Vol. 4, No. HOPL, Ar-
ticle 81.

[4] MacQueen David, Harper Robert, Reppy John,
The History of Standard ML, Proc. ACM Program.
Lang., Vol. 4, No. HOPL, Article 86.

[5] Monnier Stefan and Sperber Michael, Evolution
of Emacs Lisp, Proc. ACM Program. Lang., Vol. 4,
No. HOPL, Article 74.

[6] Hickey Rich, A History of Clojure, Proc. ACM Pro-
gram. Lang., Vol. 4, No. HOPL, Article 71.

[7] Gary Stager, The Daily Papert, available at: http:
//dailypapert.com.

[8] Michael Tempel, Logo Foundation, available
at: https://el.media.mit.edu/logo-foun
dation.

[9] Seymour Papert, Mindstorms: Children, Comput-
ers, and Powerful Ideas, 1980, Basic Books, Inc.,
New York, NY, USA.

[10] Seymour Papert, The Children’s Machine: Re-
thinking School In The Age Of The Computer,
1994, BasicBooks.

[11] Seymour Papert, The Connected Family: Bridg-
ing the Digital Generation Gap, 1996, Longstreet
Press.

https://hopl4.sigplan.org/track/hopl-4-papers#Content-Guidelines-for-Authors
https://hopl4.sigplan.org/track/hopl-4-papers#Content-Guidelines-for-Authors
https://hopl4.sigplan.org/track/hopl-4-papers#Content-Guidelines-for-Authors
http://dailypapert.com
http://dailypapert.com
https://el.media.mit.edu/logo-foundation
https://el.media.mit.edu/logo-foundation

S & R

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386334

Link to the students’ presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/S-R.pdf

https://dl.acm.org/doi/10.1145/3386334
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/S-R.pdf

S & R | 52

Essay on History of S
and R

Janne Hauglid
University of Bergen

T
his essay summarizes the paper S, R, and

Data Science [1] by John Chambers pre-

sented at The Fourth ACM SIGPLAN

HOPL conference. The paper discusses the cre-

ation and development of the R programming

language as a domain-specific language for the

domain of data science, and the language’s his-

torical connections to both the programming lan-

guage S and the field of data science.

Brief Overview of the HOPL Pa-
per
S, R, and Data Science covers the evolution of

both languages, S and R, from the early start in

the 1960s to present day.

I choose this particular HOPL
paper because I wanted to learn

more about the R language. I
personally do not have any

experience with the language
myself, but I have been

fascinated about the increased
popularity it has in statistical
computing and data analysis.
Therefore, I thought choosing

this paper would be a good
opportunity to learn more about

both S and R and their
connection to data science.

—Janne

John Chambers, the author,

emphasizes the importance of

understanding the connection

the languages has to data sci-

ence, and how this has strongly

influenced the creation and

the development of both lan-

guages.

The paper is divided into three

parts. The first part includes

the evolution of S from 1965-

1985, and the importance of

the culture and research atmo-

sphere found at Bell Labs and

the data analysis that was done

there.

The second part continues

from the year 1985 until year 2000. This part de-

scribes the transition from S to R, and the connec-

tion between those two languages. The structure

of R as it is derived from S is described, as well as

the relevant new features of R.

R was officially launched in the year 2000. In the

last part, the author talks about the growth and

evolution of the language since the launch, and

how it has continued to influence the research

done in the data science community.

Brief Overview of S and R
The history of S, R, and Data Science begins at

AT&T’s Bell Telephone Laboratories in New Jer-

sey in the decade of the 1960s. Bell Labs was

the birthplace of a great deal of important scien-

tific advances in the years following the second

world war. Among these advances were the pro-

gramming language S. It is the research in data

analysis at Bell Labs that was done during the

evolution of S that today can be recognized as

the precursor to data science. This research can

be seen as the driver behind the creation of S.

In the 1960s, powerful software for data analysis

existed in the form of an extensive subroutine

library written in Fortran. However, the details

needed to perform this analysis were tricky and

extensive, especially for analysis involving seri-

ous data in terms of size or complexity. All re-

search teams therefore required programmers to

help with this.

John Chambers and Rick Beckers wanted to make

it easier for the researchers themselves to make

these changes, instead of having to go through

programmers. Chambers and Beckers decided

they wanted to create an “interactive statistical

system” that would continue to support data

analysis, while giving the analyst a convenient,

direct interface.

Chambers and Beckers had three requirements

for this new software: convenience, complete-

ness, and extensibility. They found that the solu-

tion that would fulfill these requirements were to

build the system around an interface to Fortran.

By the time when S was distributed generally, the

interface mechanism was provided to the users

as an interface language that was precompiled

into Fortran.

S & R | 53

Chambers wrote in a 2016 book on R [2] that its

design can be summarized by three principles:

• objects: everything that exists in R is an ob-

ject;

• functions: everything that happens in R is

a function call;

• interfaces: interfaces to other languages

are a part of R.

These principles are broadly visible from the first

version of S, and they explain a number of de-

tailed decisions made during the development.

I found it very fascinating to
read about the culture and

research atmosphere at AT&T’s
Bell Telephone laboratories, and

how this was very unique for
this place.

—Janne

In the 1990s, work on R was

started by Ross Ihaka and

Robert Gentleman. The goal

of the project was that R would

be “a free immplementation of

something ’close to’ version 3

of the S language”. Since the

launch of R in 2000, the lan-

guage has gradually become

the main software to use for

statistics and data science, and the popularity

is still increasing today.

CRAN: An Overview
The paper does not talk much in detail about

specific programming features of the language

regarding syntax or semantics. However, it does

mention some features of the language itself, one

of them being the wide array of packages and

libraries that can be installed and used.

The Comprehensive R Archive Network, also

known as CRAN, is mentioned several times in

the paper. According to the author, CRAN is by

far the largest and most used site associated with

the R language.

CRAN consists of the R distributions, documen-

tation for R, contributed extensions and binaries

[3]. The CRAN package repository currently con-

tains more than 17600 packages [4].

According to Chambers, different repositories

of contributed packages, and then in particu-

lar CRAN, have become a major factor in the

growth and extension of R, particular within sci-

entific disciplines. The contributed packages

have played a central role in both the popular-

ity and usefullness of the language. Data science

as a field is constantly evolving, and will contin-

uously need a wide range of software in order to

fulfill the needs of its specialized audience. R and

its package structure have become a favoured

way to bring specialized techniques to their re-

spective users.

Since R was officially launched in 2000, the lan-

guage has expanded in every area, including the

number of users, contributors and citations, as

well as in public awareness. In addition, CRAN

has received an exponential growth in the num-

ber of packages added.

Related Work on S and R
Connection to other HOPL papers. This HOPL

paper has a few “connections” to other HOPL pa-

pers from all earlier HOPL-conferences, from the

first conference held in 1978 to the current one.

One connection that the language S has to

other programming languages is having the same

“birth place” of Bell Laboratories. As previously

mentioned, Bell Labs was home to a great deal

of scientific advances. Among those were sev-

eral programming languages, such as C (HOPL

II), C++ (HOPL II–IV) and SNOBOL (HOPL I). All

of these three languages have been presented at

previous HOPL-conferences.

In addition, both S and R were created on inter-

faces to both Fortran (HOPL I) and C (HOPL II).

Furthermore, R has also been influenced by Lisp

(HOPL I–II). For example, the datatype pairlist
in R is the traditional Lisp list.

Related work and further reading. The R-

project web page [5] contains a great deal of infor-

mation for readers who are interested in learning

more about the language. In addition, the “R

FAQ” [3] found on the R project’s page contains

answers to some of the most commonly asked

questions regarding R.

Online tutorials. For readers who are interested

in learning the language, there are several tutori-

S & R | 54

als available online at popular tutorial sites such

as Udemy, Codecademy and Coursera.

Books. R for Data Science by Hadley Wickham

and Garrett Grolemund gives an introduction on

how to do data science with R. Throughout the

book, they present the skills needed to import

data into R, how to structure it in the most useful

way, as well as how to transform, visualize and

model the data. The book is available in hard

copy as well as a free-to-use website [6].

Tool Support for R
As I do not have any experience with the language

myself, I do not have any personal recommenda-

tions for tools to use with the language. However,

the paper does bring up the importance that IDEs

have had for the language, in particular for the

creation and revision of packages and other R

software. An IDE that is specifically mentioned

and recommended is RStudio. According to the

paper, RStudio has become well-liked for teach-

ing in data science courses. In addition, this IDE

significantly simplifies both editing and installa-

tion of R packages.

Personal Experience
The part I enjoyed the most about the paper was

reading about the history and situation that led

to the creation of S. I found it very fascinating

to read about the culture and research atmo-

sphere at AT&T’s Bell Telephone Laboratories,

and how this was very unique for this place. The

culture and management style allowed for the re-

searchers to explore their own ideas while giving

them the freedom to pursue their dreams.

If I had the chance to ask the author any ques-

tions at all, I would mainly focus on two different

topics: the economics and budget behind the

project, and mistakes made during the develop-

ment. My questions would be:

1. Did the first project of developing S receive

a specific budget, and if so, was it adequate

for the project’s specific needs?

2. How did the budget affect the development

process and design decisions of the lan-

guage?

3. Were any “mistakes” made during the de-

velopment, and if so, what would the au-

thor have liked to do differently if he had

that opportunity today?

References

[1] John M. Chambers, S, R, and Data Science, Proc.
ACM Program. Lang., Vol. 4, No. HOPL, Article 84.

[2] John M. Chambers, Extending R, Chapman & Hal-
l/CRC. 2016.

[3] Kurt Hornik, The R FAQ, available at: https://
CRAN.R-project.org/doc/FAQ/R-FAQ.html.
2020.

[4] R-Project, Contributed Packages, available at:
https://cran.r-project.org/web/packa
ges/.

[5] R-Project, The R Project for Statistical Computing,
available at: https://www.r-project.org/.

[6] Hadley Wickham, Garrett Grolemund, R for Data
Science, available at: https://r4ds.had.co.
nz/.

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
https://www.r-project.org/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/

STANDARD ML

Link to the HOPL IV paper:
https://dl.acm.org/doi/10.1145/3386336

Link to the student’s presentation:
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Standard-ML.pdf

https://dl.acm.org/doi/10.1145/3386336
https://git.app.uib.no/uib-hopl-iv/slides/-/blob/master/Standard-ML.pdf

STANDARD ML | 56

Essay on History of
Standard ML

Knut Anders Stokke
University of Bergen

T
his essay presents the paper The History

of Standard ML by David MacQueen,

Robert Harper and John Reppy [1]. The

paper reviews the background and early history

of ML, the effort of standardizing and formally

defining the language, the development of some

of Standard ML’s major features, and the impact

the language had on the field of computer sci-

ence.

Brief Overview of the HOPL Pa-
per
The introduction of the paper gives a review of

Standard ML with a brief summary of its history,

Personally, I have no previous
experience with ML, but I am

familiar with ML’s type system
from programming with Haskell.

Both languages share a strong
emphasis on type safety and
formal specification. While

many programmers find such
rigorous programming

languages limiting, I find them
intriguing and worthwhile;

programming admittedly
requires more effort up front to
satisfy the type checker, which

usually pays off when one later
maintains and expands the code
base. ML has been influential in

research,——

an explanation of the lan-

guage’s key features, and a

short description of the impor-

tance of the language in com-

puter science.

The following section covers

the background of the lan-

guage and gives insights into

the British programming lan-

guage research in the 1960’s

and 1970’s, the programming

research at the University of

Edinburgh and the Edinburgh

LCF project, and the pro-

gramming languages that in-

fluenced Robin Milner’s de-

velopment of LCF/ML (the

first ML language) and those

that later influenced Standard

ML. Among these program-

ming languages are Lisp for its symbolic com-

putations, ISWIM for using lambda calculus

as a basis, POP-2 which had function closures,

GEDANKEN and its principle of completeness,

HOPE with its datatypes and pattern-matching,

and Cardelli’s ML, which had datatypes and mod-

ules. As several implementations and variants of

ML appeared, there was a motivation for develop-

ing a Standard ML. The paper covers this process

of standardising and formalising ML, which led

to the published definition of SML in 1990 and

the revised definition that was published in 1997.

The following sections of the paper thoroughly

describe five important aspects of SML. The first

aspect is SML’s Hindley-Milner type system, for

which the paper covers the previous research that

led to SML’s type system and explains the sys-

tem’s basic features: the type inference algorithm

(Algorithm W), some of the system’s concepts

(e.g., type constructors, type abbreviations, data

types), LCF/ML’s ad-hoc solution to combining

side effects and polymorphism, the polymorphic

equality operation, and the type errors. The next

aspect is the module system of SML, which did

not exist in the first ML language, but was intro-

duced in Cardelli’s ML; the paper gives an expla-

nation of the module system and the involved

design choices. The definition of the Standard

ML is the third language aspect covered by the

paper; the authors describe the early work on for-

malisation of semantics and the semantic model

used to define the language, and they explain the

content of the two published definitions in short.

The last two language aspects covered by the pa-

per are the type system used in the language’s

definition and the SML Basis Library.

The paper concludes with some of the mistakes

in the definition, the impact that Standard ML

had in the world of programming languages, and

a comment on the SML’s non-evolution that led

to the language’s declined popularity in the re-

cent years.

Brief Overview of Standard ML
Standard ML is a statically typed, functional pro-

gramming language. In functional programming,

STANDARD ML | 57

programs are constructed by defining, applying

and composing functions. Functions are first-

class citizens, which means that they can be

treated as any other values in the language: they

can be passed as arguments to other (higher-

order) functions, returned from functions, and

assigned to variables.

——as well as in teaching and
software applications, and this

paper was a good opportunity to
learn the basics and history of

this important language.
—Knut Anders

The polymorphic type sys-

tem used by Standard ML is

the Hindley-Milner system (by

Roger Hindley and Robin Mil-

ner). The language uses static

types, which enables SML code

to be type checked before it is

executed and is therefore con-

sidered safer than dynamically

typed code. It supports parametric polymorphic

types, which enables the same code to be appli-

cable for several types.

Programmers can construct new types in Stan-

dard ML using type abbreviations and algebraic

data types, where a datatype can have several

constructors, each containing a number of val-

ues. The language supports pattern matching

for extracting these values from a datatype and

case expressions that uses a datatype to create

branches of an expression based on the construc-

tor of the datatype.

The paper enabled me to get a
better understanding of the

origins of statically typed
functional programming.

—Knut Anders

SML expressions are evaluated

immediately, which makes the

language strictly evaluated.

Since the runtime computes

values that might never be

needed, larger computations

may take more time then it

would in lazy evaluated lan-

guages. On the other hand, a runtime that uses

lazy evaluation, such as the Haskell runtime,

must store code thunks that may later be evalu-

ated, which can lead to high memory usage and,

as a consequence, slow execution.

While Standard ML is a functional language, it

also supports some imperative features, such as

variable assignment and mutation of data struc-

tures. By pointing a reference of type ref to a

variable, one can later modify the variable either

through recursion or sequential composition.

The language has a safe escape mechanism that

enables programmers to fail the evaluation of an

expression by raising an exception. If a function

can raise an exception, any caller of that func-

tion must provide an expression that handles the

exception if it is raised.

Lastly, Standard ML uses a module system to di-

vide a program into smaller, composable units.

The details of the module system is covered in

the following section of this essay.

Modules: An Overview
Standard ML uses a module system to consti-

tute programs from smaller, composable units.

The module system has a notion of structures

and signatures. A structure is a collection of

named components, where each component is

typically a value, a function, or a type. A sig-

nature is a static description that specifies the

components of a structure, and is thus similar

to interfaces in object-oriented programming.

Structures and signatures are declared individu-

ally and have a many-to-many relationship: one

signature can ascribe several structures and vice

versa. By ascribing a signature to a structure, the

type checker will verify that the declared com-

ponents in the signature exist and have the right

types in the structure, and it will also hide the

components in the structure which is not de-

clared in the signature. A structure can be a com-

ponent of another structure, which makes struc-

tures hierarchical.

The following code represents an example of a

signature and structure for an ordering.

Structure IntOrd declares type elem to be int

STANDARD ML | 58

and value le to be the integer relation “less than

or equal to”. Signature ORD verifies that IntOrd
has components elem and le, and since value x
is not declared in the signature, the value is not

visible from outside the structure. Components

inside the structure, however, can still use the

hidden value.

A structure can further take another structure

as an argument and use the components of that

argument. Such structures are called functors,

since they behave as functions from one struc-

ture to another. To give an example, consider a

structure Sort for sorting a list of integers, with

an insertion sort algorithm that uses function

Int.<= to compare any two elements in the list.

The algorithm uses only the ordering of integers

to sort the list, and can therefore be used to sort

any lists over elements with an ordering; if we

change Sort into a functor that takes (X : ORD)
as an argument, the algorithm can sort lists of

type X.elem list by using X.le to compare

any two elements.

Related Work on Standard ML
Standard ML is an interesting language from the

historical aspect, as it is both influenced by and

has influenced many languages. The first ML-

dialect, LCF/ML, was implemented in the pro-

gramming language Lisp, which is covered in

the proceedings of the two first HOPL confer-

ences [2, 3]. The second volume of HOPL reviews

Pascal [4], one of the first programming language

to incorporate SML’s record types. F# [5] is an-

other dialect of ML, and is thus closely related

to Standard ML. A language that is significantly

influenced by ML is the purely functional pro-

gramming language Haskell, which was one of

the languages covered in the third HOPL confer-

ence [6].

As previously mentioned, ML touches on sev-

eral aspects of computer science research. The

LCF proof system and ML as a meta-language

for interactive proofs are reviewed in the paper

A metalanguage for interactive proof in LCF [7]

by Milner et al. The original, formal definition of

SML from 1990 is found in Definition of Standard

ML [8] and was later revised in 1997 [9]. There

exist several implementations based on the lan-

guage’s definition, such as Standard ML of New

Jersey (SML/NJ) [10] and The ML Kit [11], and an

overview of compilers and variations of the lan-

guage can be found at SML’s website [12]. SML is

an often used language in teaching of program-

ming concepts, ranging from introductory pro-

gramming [13, 14] to more advanced topics as

compilers [15] and concurrent programming [16].

One of the books on introductory programming,

Programming in Standard ML [17], is written by

Robert Harper, who is one of the authors of the

HOPL paper. The Hindley-Milner type system

and the type inference algorithm used in Stan-

dard ML are reviewed in A Theory of Type Poly-

morphism in Programming [18].

Tool Support for Standard ML
To test out Standard ML, one can use the open

source compiler SML/NJ [10]. It implements the

revised definition of SML and extends the basis

library with, among other features, functions for

getting system information and performing lazy

suspension. The compiler claims to be incremen-

tal, which means that it only compiles the modi-

fied code for effeciency reasons. It also features

a REPL (short for “read-eval-print loop”), which

enables programmers to easily get type informa-

tion of expressions, as well as evaluate them. The

text editor Visual Studio Code has an extension

SML Environment, developed by V. Julião [19],

that provides IDE support for SML with features

such as syntax highlighting and code suggestions.

It also features evaluation of a selected part of

the code, for which it uses SML/NJ behind the

scenes.

Personal Experience
The paper enabled me to get a better understand-

ing of the origins of statically-typed, functional

programming. I learnt about the early efforts of

designing proof assistants and the need for a pro-

STANDARD ML | 59

gramming language that is both type-safe and

convenient in its use. I also got insights into the

history of the Hindley-Milner type system, and I

learnt about the programming language ISWIM,

which was the first to use lambda-calculus as a

basis for programming.

The end of paper explains how the evolution of

SML was prevented by Robin Milner and Mads

Tofte. They wrote to the implementers that revi-

sions would no longer be accepted, and that one

should design new languages based on SML in-

stead of changing the language itself. I would like

to know more about the process that led to this

decision, whether the other researchers involved

with SML agreed, and if a standard committee

would reach the same conclusion.

References

[1] D. MacQueen, R. Harper, and J. Reppy, “The his-
tory of Standard ML,” Proc. ACM Program. Lang.,
vol. 4, June 2020.

[2] J. McCarthy, History of LISP, p. 173–185. New York,
NY, USA: Association for Computing Machinery,
1978.

[3] G. L. Steele and R. P. Gabriel, The Evolution of
Lisp, p. 233–330. New York, NY, USA: Association
for Computing Machinery, 1996.

[4] N. Wirth, Recollections about the Development of
Pascal, p. 97–120. New York, NY, USA: Association
for Computing Machinery, 1996.

[5] D. Syme, “The early history of F#,” Proc. ACM Pro-
gram. Lang., vol. 4, June 2020.

[6] P. Hudak, J. Hughes, S. Peyton Jones, and
P. Wadler, “A history of Haskell: Being lazy with

class,” in Proceedings of the Third ACM SIG-
PLAN Conference on History of Programming
Languages, HOPL III, (New York, NY, USA),
p. 12–1–12–55, Association for Computing Ma-
chinery, 2007.

[7] M. Gordon, R. Milner, L. Morris, M. Newey, and
C. Wadsworth, “A metalanguage for interactive
proof in LCF,” in Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 119–130, 1978.

[8] R. Milner and M. Tofte, The definition of Standard
ML. Citeseer, 1990.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueen,
The Definition of Standard ML: Revised. MIT
Press, 1997.

[10] A. W. Appel and D. B. MacQueen, “Standard ML of
New Jersey,” in International Symposium on Pro-
gramming Language Implementation and Logic
Programming, pp. 1–13, Springer, 1991.

[11] L. Birkedal, N. Rothwell, M. Tofte, and D. N.
Turner, The ML Kit: Version 1. DIKU, 1993.

[12] “Standard ML family GitHub project.” https://
smlfamily.github.io/, 2015. Accessed: 2021-
05-20.

[13] M. Felleisen, D. P. Friedman, and D. Bibby, The
little MLer. MIT Press, 1998.

[14] J. D. Ullman, Elements of ML Programming (ML97
Ed.). USA: Prentice-Hall, Inc., 1998.

[15] Z. Shao and A. W. Appel, “A type-based compiler
for Standard ML,” ACM SIGPLAN Notices, vol. 30,
no. 6, pp. 116–129, 1995.

[16] J. H. Reppy, Concurrent programming in ML.
Cambridge University Press, 2007.

[17] R. Harper, Programming in Standard ML. Cite-
seer, 2001.

[18] R. Milner, “A theory of type polymorphism in pro-
gramming,” Journal of Computer and System Sci-
ences, vol. 17, no. 3, pp. 348–375, 1978.

[19] V. Julião, “SML enviroment.” https://github
.com/vrjuliao/sml-vscode-extension. Ac-
cessed: 2021-05-20.

https://smlfamily.github.io/
https://smlfamily.github.io/
https://github.com/vrjuliao/sml-vscode-extension
https://github.com/vrjuliao/sml-vscode-extension

	APL
	Essay by Karl Henrik Elg Barlinn
	Essay by Sondre Nilsen

	Clojure
	Essay by Daniel Berge
	Essay by Andreas Garvik

	D
	Essay by Marius Kleppe Larnøy

	F#
	Essay by Kenneth Fossen

	Groovy
	Essay by Jenny Strømmen

	JavaScript
	Essay by Kathryn Frid
	Essay by Åsmund Aqissiaq Arild Kløvstad

	Logo
	Essay by Simen André Lien
	Essay by Emily Mi L. Nguyen

	S & R
	Essay by Janne Hauglid

	Standard ML
	Essay by Knut Anders Stokke

