
Axiom-Based Testing and Optimisation with
Concepts

Who? Anya Helene Bagge

From?

When? WoC 2009



Axiom-Based Testing

Why?
Used instead of or in addition to traditional unit tests

Traditional unit tests are limited to test cases made by
programmer

Could also be used for testing components, web services, ...
You need:

Code to check (implementation)

Concepts with axioms (specification)

Test data (data generators)
You get:

Test oracles

Test drivers

Unit testing framework integration



Testing Example
How?

Each axiom is turned in to a generic test oracle

For each implementation, a test case is generated

A test driver feeds generated data to test cases

Results are summarised and reported by unit testing
framework

Dictionary Concept
concept Dictionary<Dict, Key, Val> {
requires EqualityComparable<Key>;
Dict put(Dict, Key, Val);
Val get(Dict, Key);
bool contains(Dict, Key);

axiom dict1(Dict d, Key k, Val v) {
get(put(d, k, v), k) <=> v;
contains(put(d, k, v), k) <=> true;

} }



Example Test Oracle

Axioms are translated to test oracles:

dict1 Axiom Oracle
template<typename Dict, typename Key, typename Val>
requires Dictionary<Dict, Key, Val>
bool dict1(Dict d, Key k, Val v) {

if(!(get(put(d, k, v), k) == v))
return false;

if(!(contains(put(d, k, v), k) == true))
return false;

return true;
}
}



Testing in Practise

Evaluation:

Experience with Sophus shows usefulness of manual testing

Limited experience with our C++ tool

Previous projects have reported success

JAxT tool for Java is being tested by students



Challenges #1
C++ axioms are restricted to conditional equations

Challenges

Exception behaviour

Object-oriented code (can be dealt with using comma operator)

Local quantifiers

Possible Solutions

Add extra functions, and use them in axioms

More powerful formalism / arbitrary code in axioms

Challenge

Equality when equality is unavailable / expensive

Possible Solutions

Is dealt with in traditional testing theory, e.g. using
observational equality



Challenges #2

C++ axioms are restricted to conditional equations

Challenges

Functions with side-effects can change test data fed to axioms

Possible Solutions

No reuse of test data (expensive)

Always copy data into axioms (perhaps not possible?)

Challenge

Good for testing != good for rewriting / verification

Possible Solutions

?



Axiom-Based Rewriting

Each equational axiom is a potential rewrite rule:

Choose one side for matching, and the other as a replacement

Examples
unwrap(wrap(x)) <-> x

x * (y + z) <-> x * y + x * z

if(sorted(A))
sort(A) <-> A



Challenges and Improvements
C++ axioms are restricted to conditional equations

Strategies For axioms to be useful in rewriting, we must know

Which axioms are useful

When they are useful

What they are useful for

Axiom Classes

Simplification, propagation, traversal order,
do-this-before-that, etc

User-defined classes and strategies
Select axioms by name or by class:
Do a bottomup traversal, and apply all simplify rules
named foo

More: Propagation, function objects, inlining, integration with other
optimisations, concepts outside templates



Papers

Proposed Changes Using C++ axioms for rewriting and testing:

Bagge and Haveraaen, 2009: Axiom-based transformations:
Optimisation and testing. LDTA 2008, volume 238 of ENTCS
(2009).

Testing Using ‘standard’ axioms for testing:

Bagge, David and Haveraaen, 2009: �e axioms strike back:
Testing with concepts and axioms in C++. GPCE 2009. ACM,
2009


	Axiom-Based Testing
	Axiom-Based Rewriting

