
C++ Semantic Interface:
Idea, Architecture, Implementation

Eugene Zouev

Bergen Language Design Laboratory
Bergen University

May 19, 2010

Outline
The idea
Related projects

Semantic representation

Advanced search model

XML representation

Implementation & current state

2

The idea of C++ Semantic API
The main idea is to provide researchers and

programmers with a powerful, flexible
and extensible platform for creating
wide range of language-related tools and
applications

(A research task) To experiment with
separating C++ syntax from its semantics

(A research task) To experiment with using
XML for representing C++ semantics

Related Projects
ASIS

Ada Semantic Interface Specification
(for Ada95): the ISO standard

SAGE - SAGE II - ROSE (for C/C++, HPF…)
An open compiler infrastructure for
source-to-source transformations

Pivot (for C++)
Stroustrup & Dos Reis; “General infra-
structure for transformation and static
analysis of C++ programs”

Some others…

Advantages of the project
presented
Extensibility

Both source language and semantic
representation are extendable

Semantic search feature
Powerful mechanism for investigating
programs (including program comparisons)

Doesn’t depend on a third-party front-end
Comprises parsing routines with name
resolution, type checking etc.

The Evolution of the Compiler Architecture 1
Compiler

Compiler
Tables

Source
Program

Code
Generation

The Evolution of the Compiler Architecture 2
Compiler

Compiler
Tables

Source
Program

Code
Generation

Intermediate
Represen-

tation

Front End
Compiler

Source
Program …

Code
Generation 1

Code
Generation N

The Evolution of the Compiler Architecture 3
Compiler

Compiler
Tables

Source
Program

Code
Generation

Intermediate
Represen-

tation

Front End
Compiler

Source
Program …

Code
Generation 1

Code
Generation N

Semantic
Representation

Parser
(SR Generator)

Source
Program

Code
Generation

Visualization

Static
Analysis

…

SemantiC++: Common Scheme

Program

Semantic

Representation

Source
Program

Program

Semantic

Representation

Another
SR

XML SR

. . .

iSource

Interface

Code
Generators

Static
Analyzers

Engineering
Tools (UML)

Visualizers

Custom
Verifiers

Interpreters:
C++ Virtual
Machines

Optimizers

Code
Snippet

Converters

SemantiC++: Basic Principles

A rich set of classes each of which
represents a particular C++ language notion
(class, statement, operator, operand etc.)

The relationships between classes
(inheritance, aggregation, delegation)
reflect conceptual relationships between
corresponding language notions

For a source program, class instances compose
an Abstract Syntax Tree for that program

SemantiC++: Basic Principles 2

This is not just a structure (like CCI): every
classhas a functionality for typical
operations on ASTs (examples follow)

This is not just a syntax structure: every class
has a set of attributes which represent
various semantic properties of the notion
(“annotated AST”)

There is not just 1-to-1 correspondence
between source and AST:
hidden semantics is represented explicitly
(destructor calls, operator function calls)

SemantiC++: Inheritance Class Diagram
ENTITY

EXPRESSION
PRIMARY
POSTFIX_EXPRESSION

...
UNARY_EXPRESSION

...
STATEMENT

EXPRESSION_STATEMENT
COMPOUND_STATEMENT

TRY_BLOCK
SELECTION_STATEMENT

TYPE
FUNDAMENTAL

...
MODIFIER

POINTER
...

FUNCTION
CLASS
...

(Indentation denotes
inheritance)

SemantiC++: Example of Node (simplified)
class COMPOUND_STATEMENT : STATEMENT, iSCOPE {

// Structure
public LIST<STATEMENT> statements;
public LIST<DECLARATION> declarations;
// Creation
protected COMPOUND_STATEMENT() ...
public static COMPOUND_STATEMENT create() ...
// Opening
public static COMPOUND_STATEMENT open

(iSource source, iSCOPE context)...
// Validation
public override bool check() ...
public override bool validate() ...
// Semantic search
public static COMPOUND_STATEMENT pattern =

COMPOUND_STATEMENT.create();
public override bool match (ENTITY pattern) ...
// Attributes
public ENTITY owner;
public bool isValid, isChecked, isGenerated;

}

Example of a Class: Some Comments

create(): a way to create a node/subtree from
scratch

open(): a common means for reading node or
subtree from outside: in particular, from
a source text!

check(), validate(): check structural and seman-
tical correctness of the node/subtree

match(): checks whether this node matches
the parameter

pattern: common pattern for this node: matches
ANY compound statement

SemantiC++: Example of an AAST (simplified)

SemantiC++: Schematic Examples of Use
using Semantic;
...
class Example {

static void Main() {
NAMESPACE_DECL ns =

NAMESPACE_DECL.create(IDENT.create("N"));

CLASS_DECL cls = CLASS_DECL.open(// Opening
new FileSource("full-file-name"),ns);

if (cls == null || !cls.validate())
{ /* errors in class declaration */ }

string source = "int main() " +
"{ cout << \"Hello world!\";" +
" return 0; } ";

FUNCTION_DECL main = FUNCTION_DECL.openSource(
new TextSource(source),ns);

ns.add(cls,main);
if (ns.validate()) ns.execute(); // ☺

}
}

Binary and XML Formats: Two Faces
of the Same

Program
Semantic

Representation

Binary XML
Format Format

Both formats have the
same rights (both are
“first class citizens”)

Both formats are inter-
changeable

Internally there are conver-
verters Binary->XML &
XML->Binary

Why XML?

• Open format

• Extensible

• Extremely simple model

• De-facto standard

• Lots of tools & technologies (e.g.
XQuery, XSLT) to manipulate on

Why XML?

• Open format

• Extensible

• Extremely simple model

• De-facto standard

• Lots of tools & technologies (e.g.
XQuery, XSLT) to manipulate on

• (Hidden idea ☺) To experiment with
XSLT technology: is it applicable and
useful to manipulate with C++ semantic
representation (in XML form)?

Example of the XML representation
(simplified)

<while-statement ln=“1” col=“1”>
<condition>

<expression ln=“1” col=“7”> ... </expression>
<condition>
<compound-statement>

<assignment-expression ln=“2” col=“4”>
<name ln=“2” col=“4”>x</name>
<expression ln=“2” col=“9”> ... </expression>

</assignment>
<call ln=“3” col=“4”>

<name ln=“3” col=“4”>P</name>
<argument-list>

<expression ln=“3” col=“5”> ... </expression>
</argument-list>

</call>
</compound-statement>

</while-statement>

while ... {
x = ...;
P(...);

}

XML Based Architecture

Standard
Access:

DOM/SAX,
XSLT,

XQueryProgram

Semantic

Representation

in XML

Custom
APIs

Client
Tools

9

Semantic Search

Implementation Approach

The project is being implemented on top of
.NET in C#: faster programming, easier
to maintain, more reliable code

Interoperability: the SR is accessible from
any .NET language (Managed C++, C#, VB,
F#, Python, Zonnon)

All SR components have the form of .NET
DLL libraries and can be attached
to client programs in the standard way
(“using xxx.dll”)

Current state of the project

“Semantic” classes,
semantic search -

completely implemented (not tested yet)

Opening routines for sources (parsing),
XML Schema for semantic representation -

are being developed

Client tools: (Re)engineering tool for UML –
is being developed

Beta testing –
planned…

Questions?
Critique?

JAXT – Java Axiom Testing

