
 Constraint-based reachability:
test input generation for C code

Arnaud Gotlieb

Certus Software V&V Centre
SIMULA RESEARCH LABORATORY

HID, Bergen, Norway

11 Feb. 2014

1/22 1

Software
Validation&Verification

Hosted by SIMULA Research Lab.

Established in Oct. 2011
8 years

 The Certus SFI Centre

 www.certus-sfi.no

Cisco Systems Norway

ABB Robotics
Stavanger

Kongsberg Maritime

Norwegian Custom and excise

FMC Technologies

http://www.certus-sfi.no/
http://www.certus-sfi.no/
http://www.certus-sfi.no/

Outline

Introduction

Constraint-based program exploration

Euclide: An implementation for C code

Conclusions & Perspectives

3

Constraint-based reachability (CBR)

For a given program P and location loc in P, constraint-based reachability (CBR) is the
process of determining : 1) if loc is reachable and 2) inputs values for P , in order to
reach loc by using constraint solving techniques (CSP, LP, SAT, SMT, …)

Reachability problems in infinite-state systems are undecidable in general!

Introduced 20 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Developed in the context of software testing
 (e.g., symbolic evaluation, mutation testing)

Lots of Research works and tools!

Solving CBR problems involves constraint solving

Even when adding bounds,
hard combinatorial problem

Using Random Testing,
Prob{ reack k} = 2 over 232  232  232 = 2-95 = 0.00000…1.

 Loops (i.e., infinite-state systems) and infeasible paths

 Pointers, dynamic structures, higher-order computations (virtual calls)

 Floating-point computations, modular computations

 f (int x1, int x2, int x3) {

 if(x1 == x2 && x2 ==x3)
 if(x3==x1*x2) ... }

Constraint solving techniques are required!

Our contribution:
Constraint-based program exploration

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …
d

b

a

f

t

t

f

 A CBR problem

…

value of i to reach e ?

e

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …

d

b

a

f

t

t

f

 Path-oriented exploration

…

1. Path selection
 e.g., (a-b)14-…-d-e

2. Path condition generation (via symbolic exec.)
 j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

 3. Path condition solving
 unsatisfiable  FAIL

 Backtrack !

e

Even without loops, #paths
is exponential with #decisions

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …

d

b

a

f

t

t

f

 Constraint-based program exploration

…

1. Constraint model generation

2. Control dependencies generation;
 j1=100, i3 ≤ 1, j3 > 500

3. Constraint model solving

 j1  j3 entailed  unroll the loop 400 times  i1 in 401 .. 231-1

No backtrack !

e

Constraint-based program exploration

- Based on a constraint model of the whole program (Constraint Programming)

- Constraint reasoning over control structures  meta-constraints

- Requires to build dedicated constraint solvers:

 * filtering techniques, propagation queue management with priorities

 * specific meta-constraints for handling pointers and memory updates, floating-
point computations, function calls, …

 * structure-aware labelling heuristics

Viewing an assignment as a relation requires to normalize expressions and rename variables
(through single assignment languages, e.g. SSA)

 i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i; /* i2 = (i1+1) 2 */

 i1 = 3 ?

i2 = 16

i1 in -4..2

 i2 = 9 ?

i1 in -5..3

 i2 in 5..16 ? i2 = 7 ?

 no

 Using classical filtering techniques over finite domains:

Statements as constraints

 Type declaration: signed long x;  x in -231..231-1

 Assignments: i*=++i ;  i2 = (i1+1)2

 Memory and array accesses and updates:

 v=A[i] (or p=Mem[&p])  variations of element/3

 Control structures: dedicated meta-constraints
(interface, awakening conditions and filtering algorithms)

Conditionnals (SSA) if D then C1; else C2  ite/6

Loops (SSA) while D do C  w/5

Conditional as meta-constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

= …. j3 …

 (x > 0  j1 = 5  j3 = j1)  (x > 0)  j2 = 18  j3 = j2
 ((x > 0)  j3 = j2)  x > 0  j1 = 5  j3 = j1

 Join(x > 0  j1 = 5  j3 = j1 , (x > 0)  j1 = 18  j3 = j2)

 x > 0  j1 = 5  j3 = j1
 (x > 0)  j2 = 18  j3 = j2

j1 = 5; 1

Implemented as a regular constraint
(interface, awakening conditions, filtering algo.)

Loop as meta-constraint: w/5

v3 = (v1 , v2)
while(Dec)

1

2

body
3

w(Dec, V1, V2, V3, body) iff

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1
 (DecV3V1  v3=v1)  DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1  v3=v1)

f(int i) {

 j = 100;

 while(i > 1)

 { j++ ; i-- ;}

 …

 if(j > 500)

 …

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1  i2 = i3 - 1)

 i = 23, j1=100 ?

i3 = 1, j3 = 122

 no

 i3 = 10 ?

i in 401..231-1

 j1 = 100,

 j3 > 500 ?

w(Dec, V1, V2, V3, body) :-

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 

 DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,

 DecV3V1  v3=v1)

Features of constraint-based exploration

 Special meta-constraints implementation for ite and w

By construction, w is unfolded only when necessary
but w may NOT terminate !
 only a semi-correct test input generation procedure

 Join is implemented using Abstract Interpretation operators
(e.g., Interval and Polyhedral union, widening in Euclide,
Difference constraints in Gatel, Congruences in JSolver)

 Special propagators based on linear-based relaxations
Using Linear Programming over rationals (i.e., Q_polyhedra)

EUCLIDE: An implementation for C code

EUCLIDE

Conclusions & Perspectives

Conclusions

• Constraint Programming is a convenient and efficient tool for reasoning over

imperative programs, as it enables:

- constraint design and constraint-based program exploration ;

- relational modelling for reacheability problems;

- implementations are available! (e.g., EUCLIDE, PathCrawler)

• But unsatisfiability (UNSAT) detection has to be improved
 (e.g., by combining techniques from SMT-solving)

• But constraint solvers are so tuned and optimized, that they cannot be easily
showed bug-free, and blindly trusted!

Perspectives

• Constraint solving over floating-point computations
 (Bagnara Carlier Gori Gotlieb, ICST’2013)

Collaboration with U.of Parma, Italy – PhD Thesis

• Formal certification of a consistency filtering constraint solver
 (Carlier Dubois Gotlieb, FM’12)

Collaboration with INRIA, France – AURORA CertiSkatt Project

Thank you!

