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Constraint-based reachability (CBR) 

For a given program P and location loc in P, constraint-based reachability (CBR) is the 
process of determining : 1) if loc is reachable and 2) inputs values for P , in order to 
reach loc by using constraint solving techniques  (CSP, LP, SAT, SMT, …)  
 
 
Reachability problems in infinite-state systems are undecidable in general! 
 
Introduced 20 years ago by Offut and DeMillo in 
(Constraint-based automatic test data generation IEEE TSE 1991) 
 
 
Developed in the context of software testing   
 (e.g., symbolic evaluation, mutation testing)  
 
 
Lots of Research works and tools! 
 



Solving CBR problems involves constraint solving  

 

Even when adding bounds,  
hard combinatorial problem 

Using Random Testing,  
Prob{ reack k} = 2 over  232  232  232  =   2-95 = 0.00000…1. 

 Loops (i.e., infinite-state systems) and   infeasible paths 

 Pointers,  dynamic structures,  higher-order computations (virtual calls) 

 Floating-point computations, modular computations 

 

      f (int  x1, int  x2, int  x3)   {  

                                 if(x1 == x2  && x2 ==x3)  
                                     if(x3==x1*x2)  ...        } 

 

 
Constraint solving techniques are required! 



Our contribution: 
Constraint-based program exploration  



  f(  int i, …  ) 
  { 

a.    j = 100; 

      while( i > 1) 

b.        { j++ ; i-- ;} 

  

 …        

d. if( j > 500) 

e.     … 
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 A CBR problem 

… 

value of i to reach e ? 

e 
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 Path-oriented exploration  

… 

1. Path selection 
  e.g.,             (a-b)14-…-d-e         

2. Path condition generation (via symbolic exec.) 
      j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500 

 3. Path condition solving 
             unsatisfiable  FAIL 

                    Backtrack ! 

e 

Even without loops, #paths 
is exponential with #decisions 



  f(  int i, …  ) 
  { 

a.    j = 100; 

      while( i > 1) 

b.        { j++ ; i-- ;} 
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d. if( j > 500) 

e.     … 
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 Constraint-based program exploration  

… 

1. Constraint model generation 
       
2. Control dependencies generation; 
            j1=100,  i3 ≤ 1,  j3 > 500 

3. Constraint model solving 

             j1  j3 entailed  unroll the loop 400 times  i1 in   401 .. 231-1   

No backtrack ! 

e 



Constraint-based program exploration 

- Based on a constraint model of the whole program  (Constraint Programming) 
 
- Constraint reasoning over control structures  meta-constraints 
 
- Requires to build dedicated constraint solvers: 
 
     * filtering techniques, propagation queue management with priorities 
 
     * specific meta-constraints for handling pointers and memory updates, floating-
point computations, function calls, … 
 
     * structure-aware labelling heuristics   
         



Viewing an assignment as a relation requires to normalize expressions and rename variables 
(through single assignment languages, e.g. SSA) 
 

                i*=++i ;                                  i2 = (i1+1)2 

Assignment as Constraint 

i*=++i;     /* i2 = (i1+1) 2 */ 

   i1 = 3  ? 

i2 = 16 

i1 in -4..2 

 i2 = 9 ? 

i1 in -5..3  

 i2 in 5..16 ?  i2 = 7 ? 

 no 

 Using classical filtering techniques over finite domains: 



Statements as constraints 

 

 Type declaration:                    signed long x;      x in -231..231-1 
 

 Assignments:                                   i*=++i ;           i2 = (i1+1)2 

 

 Memory and array accesses and updates:  

                  v=A[i]   ( or  p=Mem[&p] )       variations of  element/3 
 

  

 Control structures:  dedicated meta-constraints  
(interface, awakening conditions and filtering algorithms) 
 
Conditionnals (SSA)    if D then C1; else C2         ite/6  

 
Loops (SSA)        while D do C                                    w/5 
 



Conditional as meta-constraint: ite/6 

ite( x > 0, j1, j2, j3,    j1 = 5,   j2 = 18 )   iff 

if( x > 0 ) 

3 

2 

0 

j2  =  18;  

= …. j3 … 

 ( x > 0    j1 = 5    j3 = j1 )    (x > 0)   j2 = 18   j3 = j2  
 ( (x > 0)   j3 = j2 )       x > 0   j1 = 5   j3 = j1 
 
 Join( x > 0  j1 = 5   j3 = j1 ,   (x > 0)    j1 = 18   j3 = j2 ) 
 

  x > 0           j1 = 5      j3 = j1      
 (x > 0)       j2 = 18    j3 = j2                                   

j1  =  5;  1 

Implemented as a regular constraint  
(interface, awakening conditions, filtering algo.) 



Loop as meta-constraint: w/5      

v3 = ( v1 , v2 )  
while( Dec ) 

1 

2 

body 
3 

w(Dec, V1, V2, V3, body)   iff 
 
    DecV3V1   bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew) 
   DecV3V1    v3=v1 

 
   (DecV3V1  bodyV3V1 )   DecV3V1  v3=v1 
   (DecV3V1  v3=v1)      DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) 
 
    join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) ,  DecV3V1  v3=v1) 



f(  int i  ) { 

  j = 100; 

  while( i > 1) 

   { j++ ; i-- ;}  

  …   

  if( j > 500) 

    …  

w(i3 > 1, (i,j1), (i2,j2), (i3,j3),  j2 = j3 + 1  i2 = i3 - 1) 

   i = 23, j1=100  ? 

i3 = 1, j3 = 122 

 no 

 i3 = 10 ? 

i in 401..231-1   

   j1 = 100,   

   j3 > 500  ? 

w(Dec, V1, V2, V3, body) :- 

  DecV3V1   bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew) 

   DecV3V1   v3=v1 

   (DecV3V1  bodyV3V1 )   DecV3V1  v3=v1 

 (DecV3V1  v3=v1)   

           DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) 

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,  

                     DecV3V1  v3=v1) 



Features of constraint-based exploration 

 Special meta-constraints implementation for ite and w 
 

By construction, w is unfolded only when necessary  
but  w may NOT terminate !  
 only a semi-correct test input generation procedure 
 
 

 Join is implemented using Abstract Interpretation  operators  
(e.g., Interval and Polyhedral union, widening in Euclide,  
Difference constraints in Gatel, Congruences in JSolver) 
 

 Special propagators based on linear-based relaxations 
Using Linear Programming over rationals (i.e., Q_polyhedra)  
 
 



EUCLIDE: An implementation for C code 



 

EUCLIDE 

 



Conclusions & Perspectives 



Conclusions 
   
• Constraint Programming is a convenient and efficient tool for reasoning over 

imperative programs, as it enables: 
 
- constraint design  and constraint-based program exploration ; 
 
- relational modelling for reacheability problems; 
 
- implementations are available!  (e.g., EUCLIDE, PathCrawler) 
 
 

• But unsatisfiability (UNSAT) detection has to be improved  
      (e.g., by combining techniques  from SMT-solving) 
 

• But constraint solvers are so tuned and optimized, that they cannot be easily 
showed bug-free, and blindly trusted! 



Perspectives 

• Constraint solving over floating-point computations 
                                                                      (Bagnara Carlier Gori Gotlieb, ICST’2013) 
 
Collaboration with U.of Parma, Italy – PhD Thesis 
 

• Formal certification of a consistency filtering constraint solver 
                                                              (Carlier Dubois Gotlieb, FM’12) 
  
Collaboration with INRIA, France – AURORA CertiSkatt Project 
 



Thank you! 


