
ParaSail
Parallel Specification and Implementation

Language
Less is More with Multicore

February 2014	

Presentation cover
page EU

www.adacore.com	

Tucker Taft
AdaCore Inc

ParaSail: Less is More 2

Outline of Presentation

•  Why is the Hardware World moving to Multicore?
–  And what does this mean for the Software World?

•  ParaSail: A simplified approach to safe parallel
programming
–  Pointer-free Divide-and-Conquer Parallel Programming

–  Region-Based Storage Management instead of garbage collection

–  Managing Parallelism using Work-Stealing

•  Conclusions

ParaSail: Less is More 3

Why is the hardware world moving to multi/manycore?

•  Power, power, power
–  Increasing clock rates past 3GHz increased power density beyond

what the chips (and customer pocketbooks) could bear.

–  More and more computing is moving to battery-operated mobile
platforms where low power is king

•  With multi/manycore, the theoretical computing
performance per watt can be increased by adding
cores, and perhaps slowing clock rate a bit
–  With single core, the performance per watt began to decrease

with increasing clock rates, due to increased source-to-drain
leakage.

•  Clock rate doubling all came to a screeching halt
in about 2005

ParaSail: Less is More 4

The Right Turn in Single-Processor Performance

Courtesy IEEE
Computer,
January 2011,
page 33.

ParaSail: Less is More 5

What are the implications of this Right Turn?

•  Clock rate implications
–  Clock rates were doubling about every 2 years

–  Clock rates stalled at about 3Ghz in 2005

–  Had they continued doubling, we would now be buying laptops
with clocks at about 50 Ghz.

•  Cores/chip implications
–  Scaling to smaller features has continued

–  Now using added chip real estate for additional CPU “cores”

–  The number of cores/chip has started doubling since 2005

–  It has been 7+ years, and mainstream commercial x86 chips are
now at 10 to 16 cores/chip, Xeon Phi at 50+, GPUs at 1000+

•  Back on Moore’s-Law exponential rocket
–  But only if considering cores/chip x performance/core

ParaSail: Less is More 6

ParaSail: A simplified approach to safe and secure
parallel programming

Mutable Objects with Value Semantics

Stack-Based Heap Management

Compile-Time Exception Handling

Race-Free Parallel Programming

ParaSail: Less is More 7

Why Design A New Parallel Language for Mission-Critical
Programming?

•  80+% of mission-critical systems are
developed in C and C++, two of the least safe
languages invented in the last 40 years

•  The “right turn” -- computers have stopped
getting faster

•  By 2020, typical chips will have 50-100 cores

•  Every 40 years you should start from scratch

•  Advanced Static Analysis has come of age --
time to get the benefit at compile-time

•  It’s what I do

ParaSail: Less is More 8

Parallel programming languages can simplify multi/
manycore programming

•  As number of cores increases, traditional
multithreading approaches become unwieldy
–  Compiler ignoring availability of extra cores would be like a

compiler ignoring availability of extra registers in a machine and
forcing programmer to use them explicitly

–  Forcing programmer to worry about possible race conditions would
be like requiring programmer to handle register allocation, or to
worry about memory segmentation

•  Cores are a resource, like virtual memory or
registers
–  Compiler should be in charge of using cores wisely

–  Algorithm as expressed in programming language should allow
compiler maximum freedom in using cores

–  Number of cores available should not affect difficulty of
programmer’s job or correctness of algorithm

ParaSail: Less is More 9

The ParaSail experiment in simplified parallel programming

•  Eliminate global variables
•  Operation can only access or update variable state via its parameters

•  Eliminate parameter aliasing
–  Use “hand-off” semantics

•  Eliminate explicit threads, lock/unlock, signal/wait
–  Concurrent objects synchronized automatically

•  Eliminate run-time exception handling
–  Compile-time checking and propagation of preconditions

•  Eliminate pointers
–  Adopt notion of “optional” objects that can grow and shrink

•  Eliminate global heap with no explicit allocate/free
of storage and no garbage collector
–  Replaced by region-based storage management (local heaps)

–  All objects conceptually live in a local stack frame

ParaSail: Less is More 10

What ParaSail has left

•  Pervasive parallelism
–  Parallel by default; it is easier to write in parallel than sequentially

–  All ParaSail expressions can be evaluated in parallel
–  In expression like “G(X) + H(Y)”, G(X) and H(Y) can be evaluated in parallel

–  Applies to recursive calls as well (as in Word_Count example)

–  Statement executions can be interleaved if no data dependencies unless
separated by explicit then rather than “;”

–  Loop iterations are unordered and possibly concurrent unless explicit
forward or reverse is specified

–  Programmer can express explicit parallelism easily using “||” as statement
connector, or concurrent on loop statement

–  Compiler will complain if any possible data dependencies

•  Full object-oriented programming model
–  Full class-and-interface-based object-oriented programming

–  All modules are generic, but with fully shared compilation model

–  Convenient region-based automatic storage management

•  Annotations part of the syntax
–  pre- and postconditions

–  class invariants and value predicates

ParaSail: Less is More 11

Example: Implicit parallelism in ParaSail
using divide-and-conquer

 func Word_Count!
 (S : Univ_String; Separators : Countable_Set<Univ_Character> := [' '])!
 -> Univ_Integer is!
 // Return count of words separated by given set of separators!
 case |S| of!
 [0] => return 0 // Empty string!
 [1] =>!
 if S[1] in Separators then!
 return 0 // A single separator!
 else!
 return 1 // A single non-separator!
 end if!
 [..] => // Multi-character string; divide and conquer!
 const Half_Len := |S|/2!
 const Sum := Word_Count(S[1 .. Half_Len], Separators) +!
 Word_Count(S[Half_Len <.. |S|], Separators)!
 if S[Half_Len] in Separators!
 or else S[Half_Len+1] in Separators then!
 return Sum // At least one separator at border!
 else!
 return Sum-1 // Combine words at border!
 end if!
 end case!
 end func Word_Count!

Simple
cases

Implicitly
Parallel
Divide
and

Conquer

ParaSail: Less is More 12

Overall ParaSail Model

•  ParaSail has four basic concepts:
–  Module

–  has an Interface, and Classes that implement it

–  is always parametrized: interface M <Formal is Int<>> is ...

–  supports inheritance of interface and code

–  Type
–  is an instance of a Module – specify module parameters

–  type T is [new] M <Actual>;

–  “T+” is polymorphic type for types implementing T’s interface

–  Object
–  is an instance of a Type; is var or const

–  var Obj : T := Create(...);

–  Operation
–  is defined in a Module, and

–  operates on one or more Objects of specified Types.

–  are visible automatically based on types of parameters/result

ParaSail: Less is More 13

Why The Simplifications? Especially, why Pointer Free?

•  Consider F(X) + G(Y)
–  We want to be able to safely evaluate F(X) and G(Y) in

parallel without looking inside of F or G
–  Presume X and/or Y might be incoming var (in-out)

parameters to the enclosing operation
–  No global variables is clearly pretty helpful

– Otherwise F and G might be stepping on same object

–  No parameter aliasing is important, so we know X and Y
do not refer to the same object

–  What do we do if X and Y are pointers?
– Without more information, we must presume that from X

and Y you could reach a common object Z
– How do parameter modes (in-out vs. in, var vs. non-var)

relate to objects accessible via pointers?

Result: pure value semantics for non-concurrent objects

ParaSail: Less is More 14

Expandable Containers Instead of Pointers

•  All types have additional null value; objects can be
declared optional (i.e.null is OK) and can grow and
shrink
–  Eliminates many of the common uses for pointers, e.g. trees

–  Assignment (“:=“) is by copy
–  Move (“<==“) and swap (“<=>”) operators also provided

•  Generalized indexing into containers replaces pointers
for cyclic structures
–  for each N in Directed_Graph[I].Successors loop ...

•  Region-Based Storage Mgmt can replace Global Heap
–  All objects are “local” with growth/shrinkage using local heap

–  “null” value carries indication of region to use on growth

•  Short-lived references to existing objects are permitted
–  Returned by user-defined indexing functions, for example

–  Used to iterate over a data structure

ParaSail: Less is More 15

Pointer-Free Trees
interface Tree_Node

 <Payload_Type is Assignable<>> is

 var Payload : Payload_Type;

 var Left : optional Tree_Node := null;

 var Right : optional Tree_Node := null;

end interface Tree_Node;

var Root : Tree_Node<Univ_String> := (Payload => “Root”);

Root.Left := (Payload => “L”, Right => (Payload => “LR”));

Root.Right <== Root.Left.Right; // Root.Left.Right now null

“Root” “Root” “Root”

LR

L LR L

ParaSail: Less is More 16

Walk Parse Tree in Parallel

type Node_Kind is Enum < [#leaf, #unary, #binary] >;!

 ...!

for X => Root while X not null loop!

 case X.Kind of!

 [#leaf] =>!

 Process_Leaf(X);!

 [#unary] =>!

 Process_Unary(X.Data) ||!

 continue loop with X => X.Operand;!

 [#binary] => !

 Process_Binary(X.Data) ||!

 continue loop with X => X.Left ||!

 continue loop with X => X.Right;!

 end case;!

end loop;!

ParaSail: Less is More 17

Other ParaSail Module/Type
Features

•  Objects: “var Obj:T;” or “const Obj: T := ...”
–  Obj.Op(...) is equivalent to Op(Obj, ...)

–  Compiler looks in all associated modules of operands for
operation of given name; “T::Op” to specify location of Op

–  Operators like “+” treated uniformly, Obj + X is equivalent
to “+”(Obj, X) and T::”+”(Obj, X) and Obj.”+”(X)

•  User-defined literals: Integer, Real, String,
Character, Enumeration literals can be used with
user-defined types
–  based on presence of “from_univ” operation(s) for type

–  all literals of a “universal” type

–  Univ_Integer (42), Univ_Real (3.141592653589793)

–  Univ_String (“Hitchhiker’s Guide”), Univ_Character (‘π’)

–  Univ_Enumeration (#green)

ParaSail: Less is More 18

A Simplified Approach to Arrays/Containers

•  Collections/Containers: Array, Map/Hashtable,
Tree, Set, Vector, Linked list, Sequence, ...
–  Elements are “key => value” or “key => is_present”

–  Homogeneous (at compile-time)
–  might be polymorphic at run-time (via a tag of some sort)

–  Iterators, indexing, slicing, combining/merging/
concatenating

–  Empty container representation (e.g. “[]”)

–  Explicit “literal” instance, e.g.:
–  [2|3|5|7 => #prime, .. => #composite]

–  May grow or shrink over time
–  Region-based automatic storage management

ParaSail: Less is More 19

ParaSail Approach for Containers

•  Container[Index] for indexing

•  Container[A..B] for slicing

•  [] for empty container

•  [key1..key2=>val1,key3=>val3] or
[val1,val1,val3] for container aggregate

•  X|Y for combining/concatenating/merging

•  C|=Y or C|=[key=>Y] for adding Y to container C

•  User defines operators “indexing”, “[]”, and “|=” and
then compiler will create temps to support “X | Y” and
“[...]” aggregates.

ParaSail: Less is More 20

More Examples of ParaSail Parallelism and Synchronization

!

for X => Root then X.Left || X.Right while X not null !

 concurrent loop!

 Process(X.Data); // Process called on each node in parallel!

end loop;!

!

concurrent interface Box<Element is Assignable<>> is!

 func Create() -> Box; // Creates an empty box!

 func Put(locked var B : Box; E : Element);!

 func Get(queued var B : Box) -> Element; // May wait!

 func Get_Now(locked B : Box) -> optional Element;!

end interface Box;!

!

type Item_Box is Box<Item>;!

var My_Box : Item_Box := Create();!

ParaSail: Less is More 21

Synchronizing ParaSail Parallelism
concurrent class Box <Element is Assignable<>> is!
 var Content : optional Element; // starts out null!
 exports!
 func Create() -> Box is // Creates an empty box!
 return (Content => null);!
 end func Create;!
!
 func Put(locked var B : Box; E : Element) is!
 B.Content := E;!
 end func Put;!
!
 func Get(queued var B : Box) -> Element is // May wait!
 queued until B.Content not null then!
 const Result := B.Content;!
 B.Content := null;!
 return Result;!
 end func Get;!
!
 func Get_Now(locked B : Box) -> optional Element is!
 return B.Content;!
 end func Get_Now;!
end class Box;!

ParaSail: Less is More 22

ParaSail Virtual Machine

•  ParaSail Virtual Machine (PSVM) designed for prototype
implementations of ParaSail.

•  PSVM designed to support “pico” threading with parallel
block, parallel call, and parallel wait instructions.

•  Heavier-weight “server” threads serve a queue of light-
weight pico-threads, each of which represents a sequence of
PSVM instructions (parallel block) or a single parallel “call”
–  Similar to Intel’s Cilk (and TBB) run-time model with work stealing.

•  While waiting to be served, a pico-thread needs only a
handful of words of memory.

•  A single ParaSail program can easily involve 1000’s of pico
threads.

•  PSVM instrumented to show degree of parallelism achieved

ParaSail: Less is More 23

Example ParaSail Virtual Machine Statistics

Command to execute: stats

Region Statistics:

 New allocations by owner: 7326 = 78%

 Re-allocations by owner: 849 = 9%

 Total allocations by owner: 8175 = 87%

 New allocations by non-owner: 851 = 9%

 Re-allocations by non-owner: 348 = 3%

 Total allocations by non-owner: 1199 = 12%

 Total allocations: 9374

Threading Statistics:
 Num_Initial_Thread_Servers : 3 + 1

 Num_Dynamically_Allocated_Thread_Servers : 0

 Max_Waiting_Threads (on some server's queue): 25

 Average waiting threads: 12.89

 Max_Active (threads): 4

 Average active threads: 3.76

 Max_Active_Masters : 32

 Max_Subthreads_Per_Master : 16

 Max_Waiting_For_Subthreads : 29

 Num_Thread_Steals : 210 out of 1097 total thread
initiations = 19%

ParaSail: Less is More 24

Summary of ParaSail extensibility

•  User-defined indexing
–  Any type with op “indexing” defined

–  Indexing function returns ref to component of parameter

–  Built-in support for extensible structures, optional elements

•  User-defined literals
–  Any type with op “from_univ” defined from:

–  Univ_Integer (42), Univ_Real (3.141592653589793)

–  Univ_String (“Hitchhiker’s Guide”), Univ_Character (‘π’)
–  Univ_Enumeration (#red)

•  User-defined ordering
–  Define single binary op “=?” (pronounced “compare”)

–  Returns #less, #equal, #greater, #unordered

–  Implies “<=“, “<“, “==“, “!=“, “>”, “>=“, “in X..Y”, “not in X..Y”

ParaSail: Less is More 25

Conclusions

ParaSail: Less is More 26

Conclusions

•  Multicore Era is here
–  Staying on Moore’s Law “rocket” depends on using multiple cores

–  New languages supporting various parallel programming paradigms

–  Some languages moving toward implicit parallelism,
–  Compiler and run-time support using cores as resources, much as they have used

registers and virtual memory

•  Simplified Language can enable Parallel-by-default programming
–  Mutable Objects with Value Semantics

–  Stack-Based Heap Management

–  Compile-Time Exception Handling

–  Race-Free Parallel Programming

•  Parallel programming can be productive, safe, and enjoyable
–  Can eliminate the sequential biases of existing languages

–  Can preserve a familiar Class-and-Interface-based Model

–  Can discover interesting new parallel programming idioms

•  Blog: http://parasail-programming-language.blogspot.com

