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Motivation

Main Goal: Build static analysis tools for programmers.

Fully automatic.
Efficient.
Scalable.
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SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any model that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}
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SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any model that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Need to handle large formulas with non-linear arithmetic and complex
boolean structure.

Barcelogic has shown to be the best SMT-solver proving satisfiability
of this kind of problems.
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Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ϕ = C1 ∧ . . . ∧ Cm in CNF, where some of
the clauses are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z ∨ w(5))∧ . . .
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Invariant generation

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.
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Invariant generation

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

Initiation condition: It holds the first time the location is reached.

Consecution condition: It is preserved under every cycle back to the
location.

We focus on inductive invariants.
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Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS’03].

Assume input programs consist of linear expressions.
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We inspire ourselves with the constraint-based method [CSS’03].

Assume input programs consist of linear expressions.

Keys:

Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

Impose initiation and consecution conditions obtaining an ∃∀ problem
over non-linear arithmetic.

Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.
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Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) {

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}
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a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

∃ c1, c2, c3, d ∀ a, s, t

true =⇒ c1 · 0 + c2 · 1 + c3 · 1 + d ≤ 0
︸ ︷︷ ︸

∧ Initiation condition

s ≤ N ∧ c1 · a+ c2 · s + c3 · t + d ≤ 0 =⇒ c1 · (a + 1) + c2 · (s + t + 2) + c3 · (t + 2) + d ≤ 0
︸ ︷︷ ︸

consecution condition
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int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

∃ c1, c2, c3, d ∀ a, s, t

c2 + c3 + d ≤ 0
︸ ︷︷ ︸

∧ Initiation condition

s ≤ N ∧ c1 · a+ c2 · s + c3 · t + d ≤ 0 =⇒ c1 · a+ c2 · s + (c2 + c3) · t + c1 + 2c2 + 2c3 + d ≤ 0
︸ ︷︷ ︸

consecution condition

Return
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Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) {

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

Apply Farkas’ Lemma to remove ∀ a, s, t

Use Barcelogic to solve the non-linear SMT problem!
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int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;
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t = t + 2;

}

return a;

}
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Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) {

int a = 0, s = 1, t = 1;

// Inv: −2a + 0s + 1t − 1 ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

{c1 = −2, c2 = 0, c3 = 1, d = −1}
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Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

Consecution condition holds.
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Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

Consecution condition holds. Hard

but Initiation condition may not hold. Soft

Key: We prefer invariants but we can live with conditional invariants

Consider that this is an optimization problem
rather than a satisfiability problem

Encode the problem using Max-SMT,

We use Barcelogic to solve it.
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Ranking functions and Invariants

Basic method: find a single ranking function f : States → Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.
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Running example

int main() {
int x , y , z ;
x = nondet();
y = nondet();
z = nondet();
while (y ≥ 0 && z 6= 0) {

if (z < 0) { y = y + z;
z = z − 1;

} else { x = x − z;
y = y + x;
z = z + 1;

}
}

}

ℓ0 ℓ1 ℓ2

τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

τ3:

y < 0
∧ x ′ = x
∧ y ′ = y
∧ z ′ = z

τ4:

z = 0
∧ x ′ = x
∧ y ′ = y
∧ z ′ = z
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Ranking functions and Conditional Invariants

In order to discard a transition τi we need to find a ranking function f over
the integers such that:

1 τi =⇒ f (x1, . . . , xn) ≥ 0 (bounded)

2 τi =⇒ f (x1, . . . , xn) > f (x ′1, . . . , x
′
n) (strict-decreasing)

3 τj =⇒ f (x1, . . . , xn) ≥ f (x ′1, . . . , x
′
n) for all j (non-increasing)

Use a linear template for the ranking function as well.
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Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both conditional invariants and ranking functions should be
combined in the same optimization problem. Back
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Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both conditional invariants and ranking functions should be
combined in the same optimization problem. Back

1 I ∧ τi =⇒ f (x1, . . . , xn) ≥ 0 (bounded)

2 I ∧ τi =⇒ f (x1, . . . , xn) > f (x ′1, . . . , x
′
n) (strict-decreasing)

3 I ∧ τj =⇒ f (x1, . . . , xn) ≥ f (x ′1, . . . , x
′
n) for all j (non-increasing)

Considering conditional invariants give more chances to the solver

But we get a conditional termination proof
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Running example

ℓ0 ℓ1 ℓ2

τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

τ3:

y < 0
∧ x ′ = x
∧ y ′ = y
∧ z ′ = z

τ4:

z = 0
∧ x ′ = x
∧ y ′ = y
∧ z ′ = z
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τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

0
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Running example

ℓ0 ℓ1

τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

0

z < 0 is a conditional invariant at location ℓ1
y is a ranking function

1 τ1 is bounded and strictly decreasing
2 τ2 is disabled
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Running example

ℓ0 ℓ1

τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

0

We have a conditional proof:

The system terminates if the condition z < 0 holds at l0 (or τ0)

Albert Rubio (UPC) Proving termination through conditional termination Bergen 2016 18 / 34



Running example

ℓ0 ℓ1

τ0: z < 0

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

We have a conditional proof:

The system terminates if the condition z < 0 holds at ℓ0 (or τ0)
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Running example: Narrowing

In order to complete the termination proof we have to consider the
complementary problem.

Narrow the transitions removing all states that we already now that are
terminating.

We can do better than just add the negation of the condition in the entry.
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Running example: Narrowing

ℓ0 ℓ1

τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

We know more!:

whenever z < 0 holds at ℓ1 the system terminates

Skip
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Running example: Narrowing

ℓ0 ℓ1

τ0: true

τ1:

y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

Narrow the transition system according to this:

whenever z < 0 holds at ℓ1 the system terminates

Skip
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Narrowing

Assume we have the following transition system:

l1 l2

τ3

τ1

τ2

τ0

τ4 τ5
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Narrowing

After sending the problem to our Max-SMT solver we get:

l1 l2

τ3

τ1

τ2

τ0

τ4

I1 I2

τ5

Conditional invariant I1 at location l1.

Conditional invariant I2 at location l2.
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Narrowing

After sending the problem to our Max-SMT solver we get:

l1 l2

τ3

τ1

τ2

τ0

τ4

I1 I2

τ5

Conditional invariant I1 at location l1.

Conditional invariant I2 at location l2.

If I1 holds in location l1 then I2 holds in location l2.

I2 is preserved in l2.

If I2 holds in location l2 then I1 holds in location l1.

If I2 holds in l2 and I2 holds in l2 then it terminates.
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Narrowing

After sending the problem to our Max-SMT solver we get:

l1 l2

τ3

τ1

τ2

τ0

τ4

I1 I2

τ5

Conditional invariant I1 at location l1.

Conditional invariant I2 at location l2.

Therefore

If I1 holds in location l1 we are done.

If I2 holds in location l2 we are done.
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Narrowing

After narrowing

l1 l2

τ3

τ1

τ2

τ0

τ4

¬I1 ¬I2

τ5

Remains to be proved

Therefore

The entry τ0 is narrowed with ¬I ′1
Transition τ1 is narrowed with ¬I1 and ¬I ′2
Transition τ2 is narrowed with ¬I2 and ¬I ′2
Transition τ3 is narrowed with ¬I2 and ¬I ′1
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Running example: Narrowing

ℓ0 ℓ1

τ0: z≥0

τ1:

z ≥ 0
y ≥ 0 ∧ z < 0
∧ x ′ = x
∧ y ′ = y + z
∧ z ′ = z − 1

τ2:

z ≥ 0
y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

Narrow the transition system according to this:

whenever z < 0 holds at ℓ1 the system terminates
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Running example. Narrowing

After simplifying the transition system we get:

ℓ0 ℓ1

τ0: z≥0

τ2:
y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1
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Running example. Narrowing

After simplifying the transition system we get:

ℓ0 ℓ1

τ0: z≥0

τ2:
y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

Conditionally terminates:

x < 0 is a conditional invariant at location ℓ1

y is a ranking function

1 τ2 is bounded and strictly decreasing
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Running example. Narrowing

Narrowing again with the complement of x < 0 we get:

ℓ0 ℓ1

τ0:
z ≥ 0
x ≥ 0

τ2:

x ≥ 0
y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1
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Running example. Narrowing

Narrowing again with the complement of x < 0 we get:

ℓ0 ℓ1

τ0:
z ≥ 0
x ≥ 0

τ2:

x ≥ 0
y ≥ 0 ∧ z > 0
∧ x ′ = x − z
∧ y ′ = y + x
∧ z ′ = z + 1

Which terminates with x as a ranking function
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Advantages of conditional termination

Conditional termination provides a natural way of

proving termination by cases
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Advantages of conditional termination

Conditional termination provides a natural way of

proving termination by cases

The Max-SMT solver tries to get a direct proof

but if this is not possible (in a given time limit)

it can provide a conditional proof (soft constraints) which give us a
progress.
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Advantages of conditional termination

Conditional termination provides a natural way of

proving termination by cases

The Max-SMT solver tries to get a direct proof

but if this is not possible (in a given time limit)

it can provide a conditional proof (soft constraints) which give us a
progress.

An additional advantage (key in some case):

If we cannot prove termination of the narrowed transition system

we can use it to try to prove non-termination

as the non-terminating execution (if any) should be there!
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Overview of the talk

1 Introduction

2 SMT/Max-SMT solving

3 (Conditional) Invariant generation

4 Termination analysis

5 Compositional termination analysis

6 Conclusions and current work
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Scalable Termination Analysis

Aim: prove termination in large programs (several consecutive loops).

New approach:

1 Obtain a conditional termination proof.

2 Check (compositionally) the condition as a Safety property.

Simple example:

assume(x > y && y ≥ 0);

while (y > 0) {

x = x - 1;

y = y - 1;

}

while (y < 0) {

y = y + x;

}
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Scalable Termination Analysis

Aim: prove termination in large programs (several consecutive loops).

New approach:

1 Obtain a conditional termination proof.

2 Check (compositionally) the condition as a Safety property.

Simple example:

assume(x > y && y ≥ 0);

while (y > 0) {

x = x - 1;

y = y - 1;

}

assert(x > 0); Rank: -y

while (y < 0) {

y = y + x;

}
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Compositional analysis through Conditional Termination

Aim: verify termination in large programs (several consecutive loops).

Key ideas:

Generate conditional proofs:

Find conditional invariants implying termination

Check the condition as a Safety property of previous loops.
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Compositional analysis through Conditional Termination

Aim: verify termination in large programs (several consecutive loops).

Key ideas:

Generate conditional proofs:

Find conditional invariants implying termination

Check the condition as a Safety property of previous loops.

In case of failure of the Safety checker
Narrow the loop and try again!
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Compositional analysis through Conditional Termination

Aim: verify termination in large programs (several consecutive loops).

Key ideas:

Generate conditional proofs:

Find conditional invariants implying termination

Check the condition as a Safety property of previous loops.

In case of failure of the Safety checker
Narrow the loop and try again!

We can handle every loop (or SCC in general) independently

Albert Rubio (UPC) Proving termination through conditional termination Bergen 2016 30 / 34



Experiments

Our techniques have been implemented in VeryMax(already presented)

These techniques can be highly parallelized (sharing few information).

Compared to last year competitors in TermComp on (335) Integer C
programs

Tool Terminating

AProVE 208(5)

HipTNT+ 210(5)

UltimateBuchiAutomizer 207

VeryMax 213
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Conclusions

Two main conclusions:

Using SMT and Max-SMT, automatic generation of conditional
invariants and ranking function becomes feasible.

In constraint-based program analysis it is often better to consider that
we have optimization problems rather than satisfiability problems!

Under development:

Combine conditional termination and non-termination analysis.

Use conditional termination to provide witness of termination.
For instance, it has applications to check reachability.

Future developments?:

Generate linear upper bounds
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Thank you!
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