Scalable Program analysis using Max-SMT

Albert Rubio

Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliveras, José Miguel Rivero and Enric Rodríguez-Carbonell

Universitat de Vic
Universitat Politècnica de Catalunya - Barcelona Tech
Microsoft Research, Cambridge

supported by MINECO/FEDER project TIN2015-69175-C4-3-R

University of Bergen
October 2016
Overview of the talk

1. Introduction
2. Fully automated software verification
3. SMT/Max-SMT solving
4. Invariant generation
5. Compositional safety verification
6. VeryMax Tool
7. Conclusions and current work
1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work
The Halting Problem
The Halting Problem

The longer it keeps you waiting
the more you appreciate a termination analysis
Software Reliability

- Safety Critical Software.
 - Avionics (航空 + 电子)
 - Railway systems
 - Automotive
 - Drone software
 - Health care

There are international software safety standards that need to be met.

- Software in business.
- Web services
- ...
Program Verification

Reasoning about software correctness goes back to the early ages of computer science:

Prove formally that

- The program terminates
 - All executions traces are finite (halting problem)
- The program meets a given specification
 - For all possible inputs (not just testing some inputs)
 - For a property given in some specification language

Both problems are undecidable even for quite simple programming languages and specification languages.
Specification language

Hoare logic: Pre/Post specifications
Specification language

Hoare logic: Pre/Post specifications

Preconditions and Postconditions are written in First-order logic. For instance:

- \(0 \leq i \leq n - 1\)
- \(\forall \alpha : 1 \leq \alpha \leq n - 1 : v[\alpha - 1] \leq v[\alpha]\)

A property (condition) is required to hold in some point of the program. It is the standard specification language for sequential programs.
A **safety** property states that **nothing bad happens**
For instance, in a system no ERROR/STOP state is **reachable**.

A **liveness** property states that **something good eventually happens**
For instance, in a system an action is eventually executed (**fairness**).

Safety and liveness properties are dual.
Safety and liveness properties

- A safety property states that nothing bad happens.

 For instance, in a system no ERROR/STOP state is reachable.
Approaches to formal verification

- Deductive verification
- Model Checking
- Testing
Deductive verification
Approaches to formal verification

Deductive verification

- Given a system and its specification (and maybe other annotations).
- Mathematical **proof obligations** (theorems) are generated.
- These theorems are proved using:
 - **Proof assistants** (Isabelle, Coq, etc)
 - **Theorem provers** (Vampire, Spass, etc)
 - **Satisfiability modulo theories (SMT)** solvers (Z3, CVC4, Barcelogic, etc)
Approaches to formal verification

Deductive verification

- Given a system and its specification (and maybe other annotations).
- Mathematical **proof obligations** (theorems) are generated.
- These theorems are proved using:
 - **Proof assistants** (Isabelle, Coq, etc)
 - **Theorem provers** (Vampire, Spass, etc)
 - **Satisfiability modulo theories (SMT)** solvers (Z3, CVC4, Barcelogic, etc)

Trade-off between **automation** and both **scalability and efficiency**.
It also depends on the expressivity of the specification language.

A particular example of this approach is SPARK 2014
SPARK 2014

- SPARK is a programming language based on Ada.
- Ada is a general-purpose language that was designed from the start (1983) with reliability, safety, and security in mind.
- SPARK is a specialized subset of Ada designed to facilitate the use of formal methods.
- SPARK is intended for applications that demand safety or security integrity.
- SPARK 2014 is a subset of Ada 2012
- SPARK 2014 is developed by Altran and AdaCore Companies (started at the University of Southampton).
Inherits from Ada:

- Powerful type system
- Automatically inserts runtime checks. For instance,
 - Array bounds check, Integer overflows, Divisions by zero
- Since Ada 2012, contract-based programming.
 Most common: Pre and Post conditions and loop invariants

```plaintext
procedure Increase (X : in out Integer) with
  Pre => X <= Max,
  -- It is the responsibility of every caller of Increase to check that
  -- its argument is less than Max.
  Post => X > X’Old;
  -- It is the responsibility of Increase’s implementation to ensure that
  -- the returned value of X is strictly greater than its initial value.
```

Does not include from Ada:

- pointers (but addresses are allowed), goto statement, exception handling, ...
Adds

- supports formal verification as well
 - proving safety (or security) properties
 - proving the software implementation meets a formal specification
Overview of the talk

1. Introduction

2. Fully automated software verification

3. SMT/Max-SMT solving

4. Invariant generation

5. Compositional safety verification

6. VeryMax Tool

7. Conclusions and current work
SPARK 2014 Automation

SPARK 2014 intends to provide automatic verification of safety properties

But it may fail!

Need of loop invariants

Cannot be generated automatically

Weakness: it is not an easy task for developers!
Invariants

Definition
An invariant of a program at a location is an assertion over the program variables that remains true whenever the location is reached.
Invariants

Definition
An invariant of a program at a location is an assertion over the program variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

- **Initiation condition:** It holds the first time the location is reached.
- **Consecution condition:** It is preserved under every cycle back to the location.
Definition
An invariant of a program at a location is an assertion over the program variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

- **Initiation condition**: It holds the first time the location is reached.
- **Consecution condition**: It is preserved under every cycle back to the location.

Deductive verification tools normally focus on inductive invariants.
Motivation

Our Main Goal: Build verification tools for programmers that are

- Fully automatic.
- Efficient.
- Scalable.
Motivation

Our Main Goal: Build verification tools for programmers that are

- Fully automatic.
- Efficient.
- Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

SMT solvers

Constraint-based Program Analysis techniques
Motivation

Our Main Goal: Build verification tools for programmers that are
- Fully automatic.
- Efficient.
- Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques
Motivation

Our Main Goal: Build verification tools for programmers that are

- Fully automatic.
- Efficient.
- Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques

Today’s Goal: Verify safety properties of programs
Motivation

Our Main Goal: Build **verification tools** for programmers that are

- Fully **automatic**.
- Efficient.
- Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques

Today’s Goal: Verify safety properties of programs

Challenge: discover (loop) invariants.

How to guide the search?
How to make it scalable?
Overview of the talk

1. Introduction
2. Fully automated software verification
3. SMT/Max-SMT solving
4. Invariant generation
5. Compositional safety verification
6. VeryMax Tool
7. Conclusions and current work
SMT solvers

SAT and SMT (Satisfiability modulo theories) solvers gain efficiency by:

- addressing only (expressive enough) *decidable fragments* of a certain logic
- incorporate *domain-specific* reasoning, e.g:
 - arithmetic reasoning
 - equality
 - data structures (arrays, lists, stacks, ...)

- **SAT**: use *propositional logic* as the formalization language
 - high degree of efficiency
 - expressive (all NP-complete) but involved encodings

- **SMT**: propositional logic + *domain-specific* reasoning
 - improves the expressivity
 - certain (but acceptable) loss of efficiency
Some problems, like software verification, need reasoning about equality, arithmetic, data structures, ...

Example (Equality with Uninterpreted Functions – EUF):
\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

Wide range of applications:

- Deductive verification
- Model checking
- Test case generation
- Scheduling
- ...

Albert Rubio (UPC) Scalable Program Analysis Techniques using SMT Bergen, October 2016 19 / 37
Theories of Interest - Arithmetic

- Very useful for obvious reasons

- Restricted fragments support more efficient methods:
 - **Bounds**: \(x \narrow k \) with \(\narrow \in \{<, >, \leq, \geq, =\} \)
 - **Difference logic**: \(x - y \narrow k \), with \(\narrow \in \{<, >, \leq, \geq, =\} \)
 - **Linear arithmetic**, e.g: \(2x - 3y + 4z \leq 5 \)
 - **Non-linear arithmetic**, e.g: \(2xy + 4xz^2 - 5y \leq 10 \)
 - Variables are either **reals** or **integers**
We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a **boolean** formula φ over some **theory** T.

Question: Is there a solution that satisfies the formula?

Example: $T = \text{non-linear (polynomial) integer/real arithmetic}$.

$$ (x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z) $$

$$ \{x = 0, y = 1, z = 1\} $$
SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula \(\varphi \) over some theory \(T \).

Question: Is there a solution that satisfies the formula?

Example: \(T = \) non-linear (polynomial) integer/real arithmetic.

\[
(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z)
\]

\{x = 0, \ y = 1, \ z = 1\}
We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula φ over some theory T.

Question: Is there a solution that satisfies the formula?

Example: $T =$ non-linear (polynomial) integer/real arithmetic.

\[
(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z)
\]

\[
\{x = 0, \ y = 1, \ z = 1\}
\]

Non-linear arithmetic decidability:

- **Integers:** undecidable (Hilbert’s 10th problem).
- **Reals:** decidable (Tarski) **but** algorithms have prohibitive complexity.
SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a **boolean** formula φ over some **theory** T.

Question: Is there a solution that satisfies the formula?

Example: $T =$ non-linear (polynomial) integer/real arithmetic.

\[
(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z)
\]

\[
\{x = 0, \ y = 1, \ z = 1\}
\]

Non-linear arithmetic decidability:

- **Integers**: undecidable (Hilbert’s 10th problem).
- **Reals**: decidable (Tarski) but algorithms have prohibitive complexity.

Incomplete solvers focus on either satisfiability or unsatisfiability.
SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a **boolean** formula φ over some **theory** T.

Question: Is there a solution that satisfies the formula?

Example: $T = \text{non-linear (polynomial) integer/real arithmetic.}$

$$
(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z)
$$

$$
\{x = 0, \ y = 1, \ z = 1\}
$$

Non-linear arithmetic decidability:

- **Integers:** undecidable (Hilbert’s 10th problem).
- **Reals:** decidable (Tarski) but algorithms have prohibitive complexity.

Incomplete solvers focus on either **satisfiability** or unsatisfiability.
We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula φ over some theory T.

Question: Is there a solution that satisfies the formula?

Example: $T =$ non-linear (polynomial) integer/real arithmetic.

\[
(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z)
\]

\[
\{x = 0, y = 1, z = 1\}
\]

- Need to handle large formulas with non-linear arithmetic and complex boolean structure.

- Barcelogic has shown to be the best SMT-solver proving satisfiability of this kind of problems.
Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula $\varphi = C_1 \land \ldots \land C_m$, where some of the conditions are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of the weights of the falsified soft clauses.

$$(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z \lor w(5)) \land \ldots$$
Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula \(\varphi = C_1 \land \ldots \land C_m \), where some of the conditions are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of the weights of the falsified soft clauses.

\[
(x^2 + y^2 > 2 \lor x \cdot z \leq y \lor y \cdot z < z^2) \land (x > y \lor 0 < z \lor w(5)) \land \ldots
\]

Barcelogic can handle Max-SMT formulas as well.
Overview of the talk

1. Introduction
2. Fully automated software verification
3. SMT/Max-SMT solving
4. Invariant generation
5. Compositional safety verification
6. VeryMax Tool
7. Conclusions and current work
Invariant generation

Definition (Recall)

An invariant is said to be inductive at a program location if:

- **Initiation condition**: It holds the first time the location is reached.
- **Consecution condition**: It is preserved under every cycle back to the location.
We inspire ourselves with the constraint-based method [CSS’03]. Assume input programs consist of linear expressions.
We inspire ourselves with the constraint-based method [CSS’03]. Assume input programs consist of linear expressions.

Keys:
- Use a **template** for candidate invariants.

\[c_1 x_1 + \ldots + c_n x_n + d \leq 0 \]
We inspire ourselves with the constraint-based method [CSS’03]. Assume input programs consist of linear expressions.

Keys:

- Use a template for candidate invariants.

\[c_1x_1 + \ldots + c_nx_n + d \leq 0 \]

- Impose initiation and consecution conditions obtaining an \(\exists \forall \) problem over non-linear arithmetic.
Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS’03]. Assume input programs consist of linear expressions.

Keys:

- Use a **template** for candidate invariants.

\[c_1 x_1 + \ldots + c_n x_n + d \leq 0 \]

- Impose **initiation** and **consecution** conditions obtaining an \(\exists \forall \) problem over non-linear arithmetic.

- Transform it using **Farkas’ Lemma** into an \(\exists \) problem over non-linear arithmetic.
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { //integer square root
    int a = 0, s = 1, t = 1;
    // Inv: $c_1 a + c_2 s + c_3 t + d \leq 0$
    while (s <= N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { // integer square root
    int a = 0, s = 1, t = 1;
    // Inv: $c_1 a + c_2 s + c_3 t + d \leq 0$
    while (s <= N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```

$$\exists c_1, c_2, c_3, d \forall a, s, t$$

$$\text{true} \implies c_1 \cdot 0 + c_2 \cdot 1 + c_3 \cdot 1 + d \leq 0 \land \text{Initiation condition}$$

$$s \leq N \land c_1 \cdot a + c_2 \cdot s + c_3 \cdot t + d \leq 0 \implies c_1 \cdot (a + 1) + c_2 \cdot (s + t + 2) + c_3 \cdot (t + 2) + d \leq 0$$

consecution condition
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { //integer square root
    int a = 0, s = 1, t = 1;
    // Inv: $c_1 a + c_2 s + c_3 t + d \leq 0$
    while (s $\leq$ N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```

\[
\exists c_1, c_2, c_3, d \; \forall a, s, t
\]
\[
c_2 + c_3 + d \leq 0 \land \text{Initiation condition}
\]
\[
s \leq N \land c_1 \cdot a + c_2 \cdot s + c_3 \cdot t + d \leq 0 \implies c_1 \cdot a + c_2 \cdot s + (c_2 + c_3) \cdot t + c_1 + 2c_2 + 2c_3 + d \leq 0
\]

consecution condition
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { //integer square root
    int a = 0, s = 1, t = 1;
    // Inv:  $c_1 a + c_2 s + c_3 t + d \leq 0$
    while (s <= N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```

Apply Farkas’ Lemma to remove $\forall a, s, t$

Use Barcelogic to solve the non-linear SMT problem!
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { //integer square root
    int a = 0, s = 1, t = 1;
    // Inv: \( c_1 a + c_2 s + c_3 t + d \leq 0 \)
    while (s \leq N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```

\[\{ c_1 = -2, c_2 = 0, c_3 = 1, d = -1 \} \]
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { //integer square root
    int a = 0, s = 1, t = 1;
    // Inv: \(-2a + 0s + 1t - 1 \leq 0\)
    while (s \leq N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```

\[\{c_1 = -2, c_2 = 0, c_3 = 1, d = -1\} \]
Scalar invariant generation: Example

Square root of a natural number N:

```c
int isqrt(int N) { //integer square root
    int a = 0, s = 1, t = 1;
    // Inv: $t \leq 2a+1$
    while (s <= N) {
        a = a + 1;
        s = s + t + 2;
        t = t + 2;
    }
    return a;
}
```

$$\{c_1 = -2, c_2 = 0, c_3 = 1, d = -1\}$$
Overview of the talk

1. Introduction
2. Fully automated software verification
3. SMT/Max-SMT solving
4. Invariant generation
5. Compositional safety verification
6. VeryMax Tool
7. Conclusions and current work
Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition.
Automatically generate intermediate assertions!!

Simple example:

```java
while (j>0) {
    j--;  
    i++;  
}

while (i>0) {
    x=x+5;  
    i--;  
}
assert(x≥0);
```
Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition. **Automatically generate intermediate assertions!!**

Simple example:

```plaintext
while (j>0) {
    j--;
    i++;
}
assert(x + 5*i >=0);
while (i>0) {
    x=x+5;
    i--;
}
assert(x>=0);
```
Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition. **Automatically generate intermediate assertions!!**

Simple example:

```plaintext
assert(j>=0 and x + 5*(i+j) >=0);
while (j>0) {
    j--;
    i++;
}
assert(x + 5*i >=0);
while (i>0) {
    x=x+5;
    i--;
}
assert(x>=0);
```
Conditional invariant generation

Definition

A formula is a **conditional (inductive) invariant** at a program location if:
- Consecution condition holds.
Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

- Consecution condition holds.
- but Initiation condition may not hold.
Definition

A formula is a **conditional (inductive) invariant** at a program location if:

- Consecution condition holds. **Hard**

- but Initiation condition may not hold.
Definition
A formula is a **conditional (inductive) invariant** at a program location if:
- Consecution condition holds. **Hard**
- but Initiation condition may not hold. **Soft**

Key: We prefer invariants but we can live with conditional invariants
Conditional invariant generation

Altogether we have:

- **Initiation condition (soft)**
- **Consecution condition (hard)**
Conditional invariant generation

Altogether we have:

- **Initiation condition (soft)**
- **Consecution condition (hard)**
- **Plus implication of the Postcondition (hard)**
Altogether we have:

- **Initiation condition (soft)**
- **Consecution condition (hard)**
- **Plus implication of the Postcondition (hard)**

Solve the problem with a Max-SMT solver
Conditional invariant generation

Altogether we have:

- **Initiation condition (soft)**
- **Consecution condition (hard)**
- **Plus implication of the Postcondition (hard)**

Solve the problem with a Max-SMT solver

If initiation condition holds we are done
Conditional invariant generation

Altogether we have:

- **Initiation condition (soft)**
- **Consecution condition (hard)**
- **Plus implication of the Postcondition (hard)**

Solve the problem with a Max-SMT solver

If initiation does not hold we have a **new** Postcondition for previous code
Altogether we have:

- **Initiation condition (soft)**
- **Consecution condition (hard)**
- **Plus implication of the Postcondition (hard)**

Solve the problem with a Max-SMT solver

If initiation does not hold we have a **new** Postcondition for previous code call recursively to the safety checker
In case of **failure** of the recursive call to the safety checker

- Add the **negation of the conditional invariant** in the corresponding locations
- **Try to prove** the Postcondition **again** (with more information).
Overview of the talk

1. Introduction
2. Fully automated software verification
3. SMT/Max-SMT solving
4. Invariant generation
5. Compositional safety verification
6. VeryMax Tool
7. Conclusions and current work
VeryMax global architecture

Our techniques have been implemented in a tool called VeryMax

Two phases

1. Front-end. From source programs to VeryMax Transition Systems
2. Static Analysis Tools
VeryMax static analysis tools

VeryMax Transition System

SAFETY CHECK

REACHABILITY CHECK

CONDITIONAL INVARIANT + RANKING FUNCTION GENERATOR

TERMINATION ANALYSIS

NON TERMINATION ANALYSIS

MAX-SMT SOLVER

INVARIANT CONDITIONAL GENERATOR
VeryMax can

1. check safety properties
2. check reachability properties
3. prove termination
4. prove non-termination
Overview of the talk

1. Introduction
2. Fully automated software verification
3. SMT/Max-SMT solving
4. Invariant generation
5. Compositional safety verification
6. VeryMax Tool
7. Conclusions and current work
Conclusions

Two main conclusions:

- Using SMT and Max-SMT, automatic generation of needed (conditional) invariants can be made efficiently.
- Scalable program verification becomes feasible

Future developments:

- Reasoning with data structures
- Resource analysis
Thank you!