
Scalable Program analysis using Max-SMT

Albert Rubio

Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliveras, José Miguel Rivero

and Enric Rodŕıguez-Carbonell

Universitat de Vic
Universitat Politècnica de Catalunya - Barcelona Tech

Microsoft Research, Cambridge

supported by MINECO/FEDER project TIN2015-69175-C4-3-R

University of Bergen
October 2016

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 1 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 2 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 3 / 37

The Halting Problem

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 4 / 37

The Halting Problem

The longer it keeps you waiting
the more you appreciate a termination analysis

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 4 / 37

Software Reliability

Safety Critical Software.

Avionics (= aviation + electronics)

Railway systems

Automotive

Drone software

Health care

There are international software safety standards that need to be met.

Software in business.

Web services

...

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 5 / 37

Program Verification

Reasoning about software correctness goes back to the early ages of
computer science:

Turing (1949), Floyd (1967), Hoare (1969), Dijkstra (1976)

Prove formally that

The program terminates
All executions traces are finite (halting problem)

The program meets a given specification

For all possible inputs (not just testing some inputs)
For a property given in some specification language

Both problems are undecidable even for quite simple programming
languages and specification languages.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 6 / 37

Specification language

Hoare logic: Pre/Post specifications

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 7 / 37

Specification language

Hoare logic: Pre/Post specifications

Preconditions and Postconditions are written in First-order logic.
For instance:

0 ≤ i ≤ n − 1

∀α : 1 ≤ α ≤ n − 1 : v [α− 1] ≤ v [α]

A property (condition) is required to hold in some point of the program

It is the standard specification language for sequential programs.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 7 / 37

Safety and liveness properties

A safety property states that nothing bad happens

For instance, in a system no ERROR/STOP state is reachable.

A liveness property states that something good eventually happens

For instance, in a system an action is eventually executed (fairness).

Safety and liveness properties are dual.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 8 / 37

Safety and liveness properties

A safety property states that nothing bad happens

For instance, in a system no ERROR/STOP state is reachable.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 8 / 37

Approaches to formal verification

Deductive verification

Model Checking

Testing

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 9 / 37

Approaches to formal verification

Deductive verification

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 9 / 37

Approaches to formal verification

Deductive verification

Given a system and its specification (and maybe other annotations).

Mathematical proof obligations (theorems) are generated.

These theorems are proved using:

Proof assistants (Isabelle, Coq, etc)
Theorem provers (Vampire, Spass, etc)
Satisfiability modulo theories (SMT) solvers (Z3, CVC4, Barcelogic,
etc)

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 9 / 37

Approaches to formal verification

Deductive verification

Given a system and its specification (and maybe other annotations).

Mathematical proof obligations (theorems) are generated.

These theorems are proved using:

Proof assistants (Isabelle, Coq, etc)
Theorem provers (Vampire, Spass, etc)
Satisfiability modulo theories (SMT) solvers (Z3, CVC4, Barcelogic,
etc)

Trade-off between automation and both scalability and efficiency.

It also depends on the expressivity of the specification language.

A particular example of this approach is SPARK 2014

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 9 / 37

SPARK 2014

SPARK is a programming language based on Ada.

Ada is a general-purpose languages that was designed from the start
(1983) with reliability, safety, and security in mind.

SPARK is a specialized subset of Ada designed to facilitate the use of
formal methods.

SPARK is intended for applications that demand safety or security
integrity.

SPARK 2014 is a subset of Ada 2012

SPARK 2014 is developed by Altran and AdaCore Companies (started
at the University of Southampton).

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 10 / 37

SPARK 2014

Inherits from Ada:

Powerful type system

Automatically inserts runtime checks. For instance,

Array bounds check, Integer overflows, Divisions by zero

Since Ada 2012, contract-based programming.
Most common: Pre and Post conditions and loop invariants

procedure Increase (X : in out Integer) with

Pre => X <= Max,

-- It is the responsibility of every caller of Increase to check that

-- its argument is less than Max.

Post => X > X’Old;

-- It is the responsibility of Increase’s implementation to ensure that

-- the returned value of X is strictly greater than its initial value.

Does not include from Ada:

pointers (but addresses are allowed), goto statement, exception
handling, ...

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 11 / 37

SPARK 2014

Adds

supports formal verification as well

proving safety (or security) properties
proving the software implementation meets a formal specification

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 12 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 13 / 37

SPARK 2014 Automation

SPARK 2014 intends to provide automatic verification of safety properties

But it may fail!

Need of loop invariants

Cannot be generated automatically
Weakness: it is not an easy task for developers!

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 14 / 37

Invariants

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 15 / 37

Invariants

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

Initiation condition: It holds the first time the location is reached.

Consecution condition: It is preserved under every cycle back to the
location.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 15 / 37

Invariants

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

Initiation condition: It holds the first time the location is reached.

Consecution condition: It is preserved under every cycle back to the
location.

Deductive verification tools normally focus on inductive invariants.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 15 / 37

Motivation

Our Main Goal: Build verification tools for programmers that are

Fully automatic.

Efficient.

Scalable.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 16 / 37

Motivation

Our Main Goal: Build verification tools for programmers that are

Fully automatic.

Efficient.

Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

SMT solvers

Constraint-based Program Analysis techniques

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 16 / 37

Motivation

Our Main Goal: Build verification tools for programmers that are

Fully automatic.

Efficient.

Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 16 / 37

Motivation

Our Main Goal: Build verification tools for programmers that are

Fully automatic.

Efficient.

Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques

Today’s Goal: Verify safety properties of programs

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 16 / 37

Motivation

Our Main Goal: Build verification tools for programmers that are

Fully automatic.

Efficient.

Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques

Today’s Goal: Verify safety properties of programs

Challenge: discover (loop) invariants.

How to guide the search?
How to make it scalabe?

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 16 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 17 / 37

SMT solvers

SAT and SMT (Satisfiability modulo theories) solvers gain efficiency by:

addressing only (expressive enough) decidable fragments of a certain
logic

incorporate domain-specific reasoning, e.g:

arithmetic reasoning
equality
data structures (arrays, lists, stacks, ...)

SAT: use propositional logic as the formalization language

+ high degree of efficiency
- expressive (all NP-complete) but involved encodings

SMT: propositional logic + domain-specific reasoning

+ improves the expressivity
- certain (but acceptable) loss of efficiency

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 18 / 37

Need and Applications of SMT

Some problems, like software verification, need reasoning about
equality, arithmetic, data structures, ...

Example (Equality with Uninterpreted Functions – EUF):
g(a)=c ∧ (f (g(a)) 6= f (c) ∨ g(a)=d) ∧ c 6=d

Wide range of applications:

Deductive verification

Model checking

...

Test case generation

Scheduling

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 19 / 37

Theories of Interest - Arithmetic

Very useful for obvious reasons

Restricted fragments support more efficient methods:

Bounds: x ⊲⊳ k with ⊲⊳∈ {<,>,≤,≥,=}

Difference logic: x − y ⊲⊳ k , with ⊲⊳∈ {<,>,≤,≥,=}

Linear arithmetic, e.g: 2x − 3y + 4z ≤ 5

Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10

Variables are either reals or integers

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 20 / 37

SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 21 / 37

SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 21 / 37

SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

Integers: undecidable (Hilbert’s 10th problem).

Reals: decidable (Tarski) but algorithms have prohibitive complexity.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 21 / 37

SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

Integers: undecidable (Hilbert’s 10th problem).

Reals: decidable (Tarski) but algorithms have prohibitive complexity.

Incomplete solvers focus on either satisfiability or unsatisfiability.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 21 / 37

SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

Integers: undecidable (Hilbert’s 10th problem).

Reals: decidable (Tarski) but algorithms have prohibitive complexity.

Incomplete solvers focus on either satisfiability or unsatisfiability.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 21 / 37

SMT solving

We make extensive use of SMT solvers inside our program analysis tools.

Input: Given a boolean formula ϕ over some theory T .

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Need to handle large formulas with non-linear arithmetic and complex
boolean structure.

Barcelogic has shown to be the best SMT-solver proving satisfiability
of this kind of problems.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 21 / 37

Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ϕ = C1 ∧ . . . ∧ Cm, where some of the
conditions are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z ∨ w(5))∧ . . .

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 22 / 37

Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ϕ = C1 ∧ . . . ∧ Cm, where some of the
conditions are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z ∨ w(5))∧ . . .

Barcelogic can handle Max-SMT formulas as well.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 22 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 23 / 37

Invariant generation

Definition (Recall)

An invariant is said to be inductive at a program location if:

Initiation condition: It holds the first time the location is reached.

Consecution condition: It is preserved under every cycle back to the
location.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 24 / 37

Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS’03].

Assume input programs consist of linear expressions.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 25 / 37

Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS’03].

Assume input programs consist of linear expressions.

Keys:

Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 25 / 37

Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS’03].

Assume input programs consist of linear expressions.

Keys:

Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

Impose initiation and consecution conditions obtaining an ∃∀ problem
over non-linear arithmetic.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 25 / 37

Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS’03].

Assume input programs consist of linear expressions.

Keys:

Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

Impose initiation and consecution conditions obtaining an ∃∀ problem
over non-linear arithmetic.

Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 25 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

∃ c1, c2, c3, d ∀ a, s, t

true =⇒ c1 · 0 + c2 · 1 + c3 · 1 + d ≤ 0
︸ ︷︷ ︸

∧ Initiation condition

s ≤ N ∧ c1 · a+ c2 · s + c3 · t + d ≤ 0 =⇒ c1 · (a + 1) + c2 · (s + t + 2) + c3 · (t + 2) + d ≤ 0
︸ ︷︷ ︸

consecution condition

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

∃ c1, c2, c3, d ∀ a, s, t

c2 + c3 + d ≤ 0
︸ ︷︷ ︸

∧ Initiation condition

s ≤ N ∧ c1 · a+ c2 · s + c3 · t + d ≤ 0 =⇒ c1 · a+ c2 · s + (c2 + c3) · t + c1 + 2c2 + 2c3 + d ≤ 0
︸ ︷︷ ︸

consecution condition

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

Apply Farkas’ Lemma to remove ∀ a, s, t

Use Barcelogic to solve the non-linear SMT problem!

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: c1a + c2s + c3t + d ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

{c1 = −2, c2 = 0, c3 = 1, d = −1}

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: −2a + 0s + 1t − 1 ≤ 0
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

{c1 = −2, c2 = 0, c3 = 1, d = −1}

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Scalar invariant generation: Example

Square root of a natural number N:

int isqrt(int N) { //integer square root

int a = 0, s = 1, t = 1;

// Inv: t ≤ 2a + 1
while (s ≤ N) {

a = a + 1;

s = s + t + 2;

t = t + 2;

}

return a;

}

{c1 = −2, c2 = 0, c3 = 1, d = −1}

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 26 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 27 / 37

Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition.
Automatically generate intermediate assertions!!

Simple example:

while (j>0) {

j--;

i++;

}

while (i>0) {

x=x+5;

i--;

}

assert(x≥0);

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 28 / 37

Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition.
Automatically generate intermediate assertions!!

Simple example:

while (j>0) {

j--;

i++;

}

assert(x + 5*i >=0);

while (i>0) {

x=x+5;

i--;

}

assert(x>=0);

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 28 / 37

Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition.
Automatically generate intermediate assertions!!

Simple example:

assert(j>=0 and x + 5*(i+j) >=0);

while (j>0) {

j--;

i++;

}

assert(x + 5*i >=0);

while (i>0) {

x=x+5;

i--;

}

assert(x≥0);

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 28 / 37

Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

Consecution condition holds.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 29 / 37

Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

Consecution condition holds.

but Initiation condition may not hold.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 29 / 37

Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

Consecution condition holds. Hard

but Initiation condition may not hold.

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 29 / 37

Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

Consecution condition holds. Hard

but Initiation condition may not hold. Soft

Key: We prefer invariants but we can live with conditional invariants

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 29 / 37

Conditional invariant generation

Altogether we have:

Initiation codition (soft)

Consecution condition (hard)

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 30 / 37

Conditional invariant generation

Altogether we have:

Initiation codition (soft)

Consecution condition (hard)

Plus implication of the Postcondition (hard)

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 30 / 37

Conditional invariant generation

Altogether we have:

Initiation codition (soft)

Consecution condition (hard)

Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 30 / 37

Conditional invariant generation

Altogether we have:

Initiation codition (soft)

Consecution condition (hard)

Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

If initiation condition holds we are done

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 30 / 37

Conditional invariant generation

Altogether we have:

Initiation codition (soft)

Consecution condition (hard)

Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

If initiation does not hold we have a new Postcondition for previous code

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 30 / 37

Conditional invariant generation

Altogether we have:

Initiation codition (soft)

Consecution condition (hard)

Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

If initiation does not hold we have a new Postcondition for previous code

call recursively to the safety checker

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 30 / 37

Safety verification: Recovering from failures

In case of failure of the recursive call to the safety checker

Add the negation of the conditional invariant in the corresponding
locations

Try to prove the Postcondition again (with more information).

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 31 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 32 / 37

VeryMax global architecture

Our techniques have been implemented in a tool called VeryMax

��������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

ITS (smt2)

LLVM CODE

TRANSFORMATION
LLVM CODE

C, C++

VERYMAX
TRANSITION

SYSTEM

TERMINATION

ANALISYS

NON
TERMINATION

ANALISYS

REACHABILITY

CHECK CHECK

MAX−SMT

SOLVER

INVARIANT

CONDITIONAL

GENERATOR

RANKING

FUNCTION

+

SAFETY

Two phases

1 Front-end. From source programs to VeryMax Transition Systems

2 Static Analysis Tools

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 33 / 37

VeryMax static analysis tools

������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

VERYMAX
TRANSITION

SYSTEM

TERMINATION

ANALISYS

NON
TERMINATION

ANALISYS

REACHABILITY

CHECK CHECK

MAX−SMT

SOLVER

INVARIANT

CONDITIONAL

GENERATOR

RANKING

FUNCTION

+

SAFETY

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 34 / 37

VeryMax static analysis tools

������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

VERYMAX
TRANSITION

SYSTEM

TERMINATION

ANALISYS

NON
TERMINATION

ANALISYS

REACHABILITY

CHECK CHECK

MAX−SMT

SOLVER

INVARIANT

CONDITIONAL

GENERATOR

RANKING

FUNCTION

+

SAFETY

VeryMax can

1 check safety properties

2 check reachability properties

3 prove termination

4 prove non-termination

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 34 / 37

Overview of the talk

1 Introduction

2 Fully automated software verification

3 SMT/Max-SMT solving

4 Invariant generation

5 Compositional safety verification

6 VeryMax Tool

7 Conclusions and current work

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 35 / 37

Conclusions

Two main conclusions:

Using SMT and Max-SMT, automatic generation of needed
(conditional) invariants can be made efficiently.

Scalable program verification becomes feasible

Future developments:

Reasoning with data structures

Resource analysis

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 36 / 37

Thank you!

Albert Rubio (UPC) Scalable Program Analysis Techniques using Max-SMTBergen, October 2016 37 / 37

	Introduction
	Fully automated software verification
	SMT/Max-SMT solving
	Invariant generation
	Compositional safety verification
	VeryMax Tool
	Conclusions and current work

