
— November 15, 2024 —
Introduction to Fortran Templates

Binary Search Example

Magne Haveraaen1, Thomas Clune2, Brad Richardson3, Aury Shafran4, Ondřej Čertík5, and
Damian Rouson6

1 Bergen Language Design Laboratory
Department of Computer Science, University of Bergen, Norway

https://bldl.ii.uib.no/
2 NASA GSFC

thomas.l.clune@nasa.gov
3 NERSC

brad.richardson@lbl.gov
4 Intel

aury.shafran@intel.com
5 LFortran

ondrej@certik.us
6 Lawrence Berkeley National Laboratories, University of California

rouson@lbl.gov

Abstract. This a document in a series of pamphlets introducing Fortran 2028 templates.
Each pamphlet is centered around an example, showing how to templetise it. The pamphlets
also discusses how to harden such code and prepare it for inclusion in a public template
library.
This pamphlet uses binary search as its motivating example.

1 Introduction

Binary search for an element in an ordered array is among every software developer’s reportoire. It
is a reusable algorithm, and without templates it needs to be hand specialised for every use case.
With templates we can make one standalone implementation of binary search, and reuse that in
all settings.

However, there are some technical pitfalls we should be aware of when implementing binary
search for others to use. We pinpoint these, ending up with a solid and reusable implementation.

1.1 Background: Fortran Templates

For decades the ISO and INCITS Fortran committees, informally known as WG5 and J3, respec-
tively, have looked at proposals for templates or generics.7 The work towards a generics mechanism
got traction at the Fortran meeting July 2019 in Tokyo with the presentation of the paper [2].

Dan Nagle (1953-2023) from NCAR, head of J3 at the time, initiated a “generics” subgroup
with Tom Clune as its lead. This work has lead to a type-safe template proposal.8

The LFortran project provides a prototype compiler for the Fortran template mechanism.9
LFortran’s template syntax deviates from the official INCITS Fortran proposed notation. The
examples in this paper uses the LFortran notation, but some of the code is too advanced for the
LFortran compiler to handle.
7 Peruse the archive of the INCITS Fortran committee at https://www.j3-fortran.org for these.
8 See the relevant papers on https://j3-fortran.org/doc/year/24
9 See https://lfortran.org for the LFortran project. On https://dev.lfortran.org an in-browser
version of the compiler and runtime system is available. The in-browser compiler also contains a selection
of template Fortran example codes.

2 Binary Search

Binary search is a very efficient algorithm for finding elements stored in a sorted array. It works
by repeatedly halving the segment of the array where the sought after value may be stored, until
it finds the value or the array segment is empty.

2.1 A plain implementation

Writing such an algorithm is a programming text book exercise. Below we give a version satisfying
the following specification.

– The algorithm assumes the first n elements of the array arr are sorted in ascending order.
– It looks for the element value target among the first n elements of arr.
– It returns an integer which is to be interpreted as an index into arr:

• A positive tnteger if the target is found at that index.
• A negative integer of the next larger element if the target is not found.
• -(n+1) if the target is larger than all elements in the array.

In this way the algorithm is useful also for non-discrete data, e.g., real numbers and colour spaces
where an exact match could be rare.
simple integer function binary_search(arr, n, target)
implicit none
! The elements are of integer type, arr(1:n) must be sorted
integer, intent(in) :: arr(:)
! The target element to be searched for in the array
integer, intent(in) :: target
! Index into the array: upper limit of array segment to be searched
integer, intent(in) :: n

! Indices into the array (local variables)
integer :: low, high, mid

low = 1
high = n

do while (low <= high)
mid = (low + high) / 2
if (arr(mid) < target) then

! Target in upper half of array segment
low = mid + 1

else if (target < arr(mid)) then
! Target in lower half of array segment
high = mid - 1

else ! arr(mid) == target
binary_search = mid
return

end if
end do

! If not found, return the negative index for the next larger element
binary_search = -low

end function binary_search

In order to use an implementation across different types of data we will templatise the code. If
we are thinking like a C++ template developer, we introduce a type argument, a deferred type, T
for the elements.

2

10 simple integer function binary_search{T}(arr, n, target)
11 ! Declaring template argument type T
12 type, deferred :: T
13 ! The elements are of type T, arr(1:n) must be sorted
14 type(T), intent(in) :: arr(:)
15 ! The target element of type T to be searched for in the array
16 type(T), intent(in) :: target
17 ! Index into the array: upper limit of array segment to be searched
18 integer, intent(in) :: n
19

20 ! Indices into the array (local variables)
21 integer :: low, high, mid
22

23 low = 1
24 high = n
25

26 do while (low <= high)
27 mid = (low + high) / 2
28 if (arr(mid) < target) then
29 ! Target in upper half of array segment
30 low = mid + 1
31 else if (target < arr(mid)) then
32 ! Target in lower half of array segment
33 high = mid - 1
34 else ! arr(mid) == target
35 binary_search = mid
36 return
37 end if
38 end do
39

40 ! If not found, return the negative index for the next larger element
41 binary_search = -low
42 end function binary_search

This is invalid for Fortran templates, since there is no way the compiler can know if a type T
will have an operator(<). The only types in Fortran that intrinsically admits operator(<) are
INTEGER and REAL. The LFortran compiler gives the following error message.
semantic error: Compare: only Integer or Real can be on the LHS and RHS.
If operator is .eq. or .neq. then Complex type is also acceptable
--> BinarySearch.f90:28:13
|

28 | if (arr(mid) < target) then
| ^^^^^^^^^^^^^^^^^

Ensuring type-safety forces us to explicitly declare the comparison operator as a argument. This
will also open up for greater flexibility, e.g., using operator(>) for binary search in an array sorted
in descending order.

2.2 A naïve standalone template procedure

In the previous section we provided code for searching for integers in an integer array. Obviously
the same algorithm would work for any data. So we would like to introduce a template type
argument T for the target and elements of the array. As noted above, we also need to introduce
the comparison operation as a template argument.

3

For Fortran templates we can define a requirement with the declaration of the comparison
predicate. It uses Fortran’s existing interface construct, a somewhat longwinded notation.

requirement binary_predicate_r(T, bin)
type, deferred :: T
interface
simple logical function bin(x, y)
type(T), intent(in) :: x, y

end function
end interface

end requirement

This requirement defines a binary predicate, a logical function with two arguments. We also state
that the type T is deferred, i.e., it is a type argument to the requirement.10 Such requirements will
be natural to include in a standard library for template Fortran.

Now the naïve templated version of binary search can look like this.
24 simple integer function binary_search {T,lt} (arr, n, target)
25 ! Declaring template arguments type T and strict comparison relation lt
26 require :: binary_predicate_r(T,lt)
27 ! The elements are of type T, arr(1:n) must be sorted according to lt
28 type(T), intent(in) :: arr(:)
29 ! The target element of type T to be searched for in the array
30 type(T), intent(in) :: target
31 ! Index into the array: upper limit of array segment to be searched
32 integer, intent(in) :: n
33

34 ! Indices into the array (local variables)
35 integer :: low, high, mid
36

37 low = 1
38 high = n
39

40 do while (low <= high)
41 mid = (low + high) / 2
42 if (lt(arr(mid), target)) then
43 ! Target in upper half of array segment
44 low = mid + 1
45 else if (lt(target, arr(mid))) then
46 ! Target in lower half of array segment
47 high = mid - 1
48 else ! arr(mid) == target
49 binary_search = mid
50 return
51 end if
52 end do
53

54 ! If not found, return the negative index for the next larger element
55 binary_search = -low
56 end function binary_search

Note the require statement on line 26. It uses the requirement binary_predicate_r to both
declare T as a deferred type and lt as a binary predicate. This is a very compact way to get both
the declarations in place by using the requirement.

10 It is not necessary to introduce a requirement, as the body of the requirement can be placed directly in
the body of the standalone procedure instead of using a require statement.

4

We consider this implementation naïve since it does not cater for Fortran having multiple inte-
ger types. Such types are differentiated by the kind attribute, varying in what ranges they cover,
e.g., 32bit integers (-2 147 483 648 through 2 147 483 647) or 64 bit integers (-9 223 372 036 854 775 808
through 9 223 372 036 854 775 807).

The other problem with this algorithm is that it does not handle searching very large arrays
well. Consider an array with 4GB of BFloat16 data (a 16bit floating point commonly used in
machine learning applications). This is just about the range that can be handled using signed
32bit integers, a typical Fortran integer. When searching in the upper end of such an array, the
sum low + high, see line 38, will exceed the 32bit range, causing an overflow in the computation,
leaving mid with an irrelevant value. Hopefully the situation is detected and not silently ignored.
This problem was discovered back in 2006 when standard computer memory went beyond 2GB
[1].

2.3 A hardened template procedure

Here we harden the templated binary search algorithm to ensure that no user of it will trip up.
We let the user choose which kind of integers should be used for indexing, the template argu-

ment k. Thus the user may use a large range integer, such as 64bit, if the arrays are extremely
large, e.g., more than 16GB of double precision floating point data.

We reformulate the computation of the value mid such that no internal overflow will occur,
however big the data set becomes.

As above, we exploit the flexibility of using templates in letting the user choose what type of
data to be searched, the template type argument T, and which ordering relation to be used, the
lt argument.
simple integer(kind=k) function binary_search {T,lt,k} (arr, n, target)
! Declaring template arguments type T and strict comparison relation lt
require :: binary_predicate_r(T,lt)
! Declaring constant k for use as kind argument for the indices
integer, deferred, argument :: k
! The elements are of type T, arr(1:n) must be sorted according to lt
type(T), intent(in) :: arr(:)
! The target element of type T to be searched for in the array
type(T), intent(in) :: target
! Index into the array: upper limit of array segment to be searched
integer(kind=k), intent(in) :: n

! Indices into the array (local variables)
integer(kind=k) :: low, high, mid

low = 1
high = n

do while (low <= high)
mid = low + (high-low) / 2
if (lt(arr(mid), target)) then

! Target in upper half of array segment
low = mid + 1

else if (lt(target, arr(mid))) then
! Target in lower half of array segment
high = mid - 1

else ! arr(mid) == target
binary_search = mid
return

5

end if
end do

! If not found, return the negative index for the next larger element
binary_search = -low

end function binary_search

In order to use the templated code, we need to instantiate it with the relevant arguments.

3 Instantiating Binary Search

To use the templated binary search algorithm we need to instantiate it for the circumstance
where we want to use it. If we want exactly the same behaviour as the very first binary search
implementation, we need to select the default integer type as our element type, use operator(<)
as our comparison operation, and provide the argument k with kind(0) which gives the kind value
corresponding to the default integer. Thus we achieve this goal by using the template arguments
{integer,operator(<),4} to the function call. In the call we let arr be an integer array with 10
elements and 7 be the target, both with the default integer kind.
position = binary_search {integer,operator(<),kind(0)} (arr, 10, 7)

This replicates the call from Section 2.1. The second template arguments provides the ordering
operator(<), since it is impossible for the compiler to decide wihich ordering operation is intended,
e.g., operator(<) versus operator(>).

It might feel unnecessary to list integer in the template argument list, since this could be
derived from the type of the arguments arr and 7. But the operator(<) is overloaded (a generic
name in Fortran terminology) for all integer and real kinds in Fortran, and may also be provided
by user defined derived types. However, since the exact declaration of this operator is defined by
the requirement binary_predicate_r, the compiler is able to determine precisely which of these
alternatives will be used. This is different from arguments to procedures, which must have a unique
name (a specific name in Fortran terminology) in order to type-check the procedure call. When
needing a specific name for the comparison operator or other generic operators or procedures, we
will have to write wrapper functions, a significant inconvenience.

The tradeoff to declare the type argument explicitly allows the deduction of which operation
to use from overload sets–an important ergonomic for using templates.

We can also instantiate binary search for complex numbers, but then we need to define an
ordering relation to use for the search. The following logical function orders complex numbers first
on their real component, then by their imaginary component.

pure logical function complex_less(zx, zy) result(less)
complex, intent(in) :: zx, zy
less = (zx%re < zy%re)
if (zx%re /= zy%re) return
! real parts equal - imaginary part is tie breaker
less = (zx%im < zy%im)

end function complex_less

We can then instantiate binary search for complex numbers using complex_less.
position = binary_search {complex,complex_less,kind(0)} (carr, 10, (7.,.4))

This will search for the complex number (7.,.4) in an array carr of 10 complex numbers.

4 Summary

When preparing library code, it is important to consider corner cases that may arise for users
of the library. In the above sequence of binary search algorithms, we started out with a version

6

that would return useful indices for data that might not be discrete like the integers. Then we
templatised this procedure, ensuring that the code could be used for any type T and any strict
comparison operation for that type. We then hardened the code, allowing a user of the template
to choose which of Fortran’s integer kinds to use for indexing, and carefully computing internal
data in such a way not to cause overflow issues.

Fortran’s template mechanism is type-safe.
The body of a standalone procedure is type-checked by the compiler and possible problems are

flagged immediately. This is the same as one would expect non-template code to be type-checked.
An instantiation is type-checked based on the declarations of the template arguments, ensuring

that instantiation errors are flagged as such. There will be no error message relating to template
internals at this stage, since the compiler will not need to look inside the template in order to
discover inconsistencies.

We also discussed the trade-off of the user having to provide explicitly type arguments to
a template instantiation, with the benefit of allowing overloaded operators and procedures as
arguments. The compiler then uses the explicit type arguments to deduce which specific procedure
from an overload set is intended.

The appendices contain the standard Fortran, non-hardened version of the plain code written
specifically for integers, and the hardened template Fortran version which is fully reusable.

Both these versions come with a simple test program that builds confidence in the code.
We hope this excursion into template Fortran and binary search has been a useful venture for

the reader.

References

1. Bloch, J.: Extra, extra - read all about it: Nearly all binary searches and mergesorts are broken, https:
//ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html, accessed 2020-07-23

2. Haveraaen, M., Järvi, J., Rouson, D.: Reflecting on generics for Fortran (2019), {https://j3-fortran.
org/doc/year/19/19-188.pdf}, presented at the Fortran Standardisation Meeting, ANSI PL22.3 (J3)
& ISO/IEC JTC 1/SC 22/WG 5 in Tokyo (Japan), 2019-08-05 through 2019-08-09.

A Integer Binary Search with test program

module binary_search_m
implicit none

contains

!! The binary search function searches through the first n elements of arr looking for target.
!! It returns:
!! - A positive index in arr to the target if found.
!! - A negative index of the next larger element in arr if the target is not found.
!! - -(n+1) if the target is larger than all elements in the array.
simple integer function binary_search(arr, n, target)
implicit none
! The elements are of integer type, arr(1:n) must be sorted
integer, intent(in) :: arr(:)
! The target element to be searched for in the array
integer, intent(in) :: target
! Index into the array: upper limit of array segment to be searched
integer, intent(in) :: n

! Indices into the array (local variables)
integer :: low, high, mid

7

low = 1
high = n

do while (low <= high)
mid = (low + high) / 2
if (arr(mid) < target) then

! Target in upper half of array segment
low = mid + 1

else if (target < arr(mid)) then
! Target in lower half of array segment
high = mid - 1

else ! arr(mid) == target
binary_search = mid
return

end if
end do

! If not found, return the negative index for the next larger element
binary_search = -low

end function binary_search

end module binary_search_m

program binary_search_program
use binary_search_m
implicit none

!! Test data
logical :: testerr
integer :: arr(10) = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
integer :: testdata(7) = [12,22,13,3,5,1,0]
integer :: testsizes(5) = [10,8,2,1,0]
integer :: answers(5,7)
integer :: i, j, position
answers(1,:) = [-7,-11, 7, 2, 3, 1,-1]
answers(2,:) = [-7, -9, 7, 2, 3, 1,-1]
answers(3,:) = [-3, -3,-3, 2,-3, 1,-1]
answers(4,:) = [-2, -2,-2,-2,-2, 1,-1]
answers(5,:) = [-1, -1,-1,-1,-1,-1,-1]

print *, "Binary search test program"
print *, "Unit test data"
print *, "testsizes=", testsizes
print *, "answers="
print *, answers
print *, "Unit tests"
testerr = .false.
print *, "arr=", arr
print *, "testdata=", testdata
do j = 1,size(testsizes)
do i = 1, size(testdata)
position = binary_search(arr, testsizes(j), testdata(i))
if (.not. position == answers(j,i)) then

8

print *, "error: j=", j, " testsizes(j)=", testsizes(j), " i=", i, &
" testdata(i)=", testdata(i), " position=", position, " answers(j,i)=", answers(j,i)

testerr = .true.
end if

end do
end do
if (testerr) then
print *, "Test errors, see diagnostics above"

else
print *, "SUCCESS!"

end if

end program binary_search_program

B Hardened Template Binary Search with test program

module binary_search_m
implicit none

!! A binary predicate is a logical function which takes two inputs of type T.
requirement binary_predicate_r(T, bin)

type, deferred :: T
interface
simple logical function bin(x, y)
type(T), intent(in) :: x, y

end function
end interface

end requirement

contains

!! This is a standalone template procedure for binary search.
!! It works for any element type T with a strict comparison predicate lt.
!! The range used for integer indices is given by kind k.
!! The binary search function searches through the first n elements of arr looking for target.
!! It returns:
!! - A positive index in arr to the target if found.
!! - A negative index of the next larger element in arr if the target is not found.
!! - -(n+1) if the target is larger than all elements in the array.
simple integer(kind=k) function binary_search {T,lt,k} (arr, n, target)
! Declaring template arguments type T and strict comparison relation lt
require :: binary_predicate_r(T,lt)
! Declaring constant k for use as kind argument for the indices
integer, deferred, parameter :: k
! The elements are of type T, arr(1:n) must be sorted according to lt
type(T), intent(in) :: arr(:)
! The target element of type T to be searched for in the array
type(T), intent(in) :: target
! Index into the array: upper limit of array segment to be searched
integer(kind=k), intent(in) :: n

! Indices into the array (local variables)
integer(kind=k) :: low, high, mid

9

low = 1
high = n

do while (low <= high)
mid = low + (high-low) / 2
if (lt(arr(mid), target)) then

! Target in upper half of array segment
low = mid + 1

else if (lt(target, arr(mid))) then
! Target in lower half of array segment
high = mid - 1

else ! arr(mid) == target
binary_search = mid
return

end if
end do

! If not found, return the negative index for the next larger element
binary_search = -low

end function binary_search

end module binary_search_m

program binary_search_program
! Import bnary search
use binary_search_m
! Import integer kinds for 32bit and 64bit signed integers.
use iso_fortran_env, only : INT32, INT64
implicit none

! Defining kind for 32bit integers (index type)
integer, parameter :: k = INT32
! Defining kind for 64bit integers (element type)
integer, parameter :: d = INT64

!! Test data
logical :: testerr
integer(kind=d) :: arr(10) = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
complex :: carr(10) = [(1.,0.), (1.,.3), (5.,0.), (5.,7.), (5.,9.9), (11.,1.), (13.2.), (15.,0.), (17.,-3.), (19.,-.4)]
integer(kind=d) :: testdata(7) = [12,22,13,3,5,1,0]
complex :: carr(10) = [(1.,0.), (1.,.3), (5.,0.), (5.,7.), (5.,9.9), (11.,1.), (13.,2.), (15.,0.), (17.,-3.), (19.,-.4)]
complex :: ctestdata(7) = [(12.,-2.5), (22.,2.),(13.,2.),(1.,.3),(5.,0.),(1.0,0.),(1.,-0.4)]
integer(kind=d) :: testsizes(5) = [10,8,2,1,0]
integer(kind=d) :: answers(5,7)
integer(kind=k) :: i, j, position
answers(1,:) = [-7,-11, 7, 2, 3, 1,-1]
answers(2,:) = [-7, -9, 7, 2, 3, 1,-1]
answers(3,:) = [-3, -3,-3, 2,-3, 1,-1]
answers(4,:) = [-2, -2,-2,-2,-2, 1,-1]
answers(5,:) = [-1, -1,-1,-1,-1,-1,-1]

print *, "Binary search test program"

10

print *, "Unit test data"
print *, "testsizes=", testsizes
print *, "answers="
print *, answers
print *, "Unit tests"
testerr = .false.
print *, "arr=", arr
print *, "testdata=", testdata
do j = 1,size(testsizes)
do i = 1, size(testdata)
position = binary_search {integer(kind=d),operator(<),k} (arr, testsizes(j), testdata(i))
if (.not. position == answers(j,i)) then
print *, "error: j=", j, " testsizes(j)=", testsizes(j), " i=", i, &
" testdata(i)=", testdata(i), " position=", position, " answers(j,i)=", answers(j,i)

testerr = .true.
end if

end do
end do
print *, "carr=", carr
print *, "ctestdata=", ctestdata
do j = 1,size(testsizes)
do i = 1, size(ctestdata)
position = binary_search {complex,complex_less,k} (carr, testsizes(j), ctestdata(i))
if (.not. position == answers(j,i)) then
print *, "error: j=", j, " testsizes(j)=", testsizes(j), " i=", i, &
" ctestdata(i)=", ctestdata(i), " position=", position, " answers(j,i)=", answers(j,i)

testerr = .true.
end if

end do
end do
if (testerr) then
print *, "Test errors, see diagnostics above"

else
print *, "SUCCESS!"

end if

contains

! Provide a lexical ordering on complex numbers: first real part, then imaginary part.
pure logical function complex_less(zx, zy) result(less)

complex, intent(in) :: zx, zy
less = (zx%re < zy%re)
if (zx%re /= zy%re) return
! real parts equal - imaginary part is tie breaker
less = (zx%im < zy%im)

end function complex_less

end program binary_search_program

11

