
EASY Programming with Rascal

Paul Klint

Joint work with
Emilie Balland, Bas Basten, Jeroen van den Bos, Mark
Hills, Arnold Lankamp, Bert Lisser, Tijs van der Storm,

Jurgen Vinju

Opening BLDL, November 4, 2009, Bergen, Norway

EASY Meta-Programming with RASCAL 2

Cast of Heroes

● Alice, system administrator
● Bernd, forensic investigator
● Charlotte, financial engineer
● Daniel, multi-core specialist
● Elisabeth, model-driven engineering specialist

EASY Meta-Programming with RASCAL 3

Meet Alice

● Alice is security administrator at a large online
marketplace

● Objective: look for security breaches
● Solution:

● Extract relevant information from system log files,
e.g. failed login attempts in Secure Shell

● Extract IP address, login name, frequency, …
● Synthesize a security report

EASY Meta-Programming with RASCAL 4

Meet Bernd

● Bernd: investigator at German forensic lab
● Objective: finding common patterns in

confiscated digital information in many different
formats. This is very labor intensive.

● Solution:
● design DERRICK a domain-specific language for

this type of investigation
● Extract data, analyze the used data formats and

synthesize Java code to do the actual investigation

EASY Meta-Programming with RASCAL 5

What are their Common Problems?

● How to parse source code/data files
● How to extract facts from it
● How to perform computations on these facts
● How to generate new source code
● How to synthesize other information

EASY: Extract-Analyze-SYnthesize ParadigmEASY: Extract-Analyze-SYnthesize Paradigm

EASY Meta-Programming with RASCAL 6

System
Under

Investigation
(SUI)

ExtractExtract

Internal RepresentationInternal Representation AnalyzeAnalyze

SynthesizeSynthesize

ResultsResults

??
EASY

Paradigm

EASY Meta-Programming with RASCAL 7

What tools are available to our
heroes?

● Lexical tools: Grep, Awk, Perl, Python, Ruby
● Regular expressions have limited expressivity
● Hard to maintain

● Compiler tools: yacc, bison, CUP, ANTLR
● Only automate front-end part
● Everything else programmed in C, Java, ..

● Attribute Grammar tools: FNC2, JastAdd, …
● Mostly analysis, weak in transformation

EASY Meta-Programming with RASCAL 8

What tools are available to our
heroes?

● Relational Analysis tools: Grok, Rscript
● Strong in analysis

● Transformation tools: ASF+SDF, Stratego,
TOM, TXL
● Strong in transformation

● Logic languages: Prolog
● Many others …

Apologies if
your favorite tool

does not
appear in this list

EASY Meta-Programming with RASCAL 9

Extract Analyze Synthesize

Lexical tools
++ +/- --

Compiler tools
++ +/- +/-

Attribute
grammar tools ++ +/- --

Relational
tools -- ++ --

Transformation
tools -- +/- ++

Rascal ++ ++ ++

EASY Meta-Programming with RASCAL 10

Why a new Language?

● No current technology spans the full range of
EASY steps

● There are many fine technologies but they are
● highly specialized
● hard to learn
● not integrated with a standard IDE
● hard to extend
● ...

EASY Meta-Programming with RASCAL 11

Here comes Rascal to the Rescue

EASY Meta-Programming with RASCAL 12

Rascal ...

● ... is a new language for meta-programming
● … supports the EASY paradigm
● ... is based on

● Syntax Analysis
● Term Rewriting
● Relational Calculus

EASY Meta-Programming with RASCAL 13

Rascal Elevator Pitch

EASY Meta-Programming with RASCAL 14

Rascal Elevator Pitch

● Sophisticated built-in
data types

● Immutable data
● Static safety
● Generic types
● Local type inference
● Pattern Matching
● Syntax definitions and

parsing

● Concrete syntax
● Visiting/traversal
● Comprehensions
● Higher-order
● Familiar syntax
● Java and Eclipse

integration
● Read-Eval-Print

(REPL)

EASY Meta-Programming with RASCAL 15

EASY Meta-Programming with RASCAL 16

ExampleExample

A Domain-specific A Domain-specific
LanguageLanguage
for for
State MachinesState Machines

EASY Meta-Programming with RASCAL 17

canReach(

)

State Machine

finite-state machine
state S1;
state S2;
state S3;
trans a: S1 -> S2;
trans b: S2 -> S1;
trans a: S2 -> S3

S1 S2 S3
a

b

a

= (S1 : {S1, S2, S3},
 S2: {S1, S2, S3},
 S3: {})

EASY Meta-Programming with RASCAL 18

State Machine Concrete Syntax
module demo/StateMachine/Syntax
...
 "state" Id -> State
 "trans" Id ":" Id "->" Id -> Trans
 State -> Decl
 Trans -> Decl
 “finite-state” “machine” {Decl ";"}+ -> FSM

EASY Meta-Programming with RASCAL 19

CanReach (1)
module demo::StateMachine::CanReach

import demo::StateMachine::Syntax;
import Graph;

FSM example =
 finite-state machine

state S1;
 state S2;
 state S3;
 trans a: S1 -> S2;
 trans b: S2 -> S1;
 trans a: S2 -> S3;
… (next sheet)

A concrete,
unquoted,

FSM text fragment.

EASY Meta-Programming with RASCAL 20

CanReach (2)
module demo::StateMachine::CanReach
… (previous sheet)

public map[str, set[str]] canReach(FSM fsm){
 transitions = getTransitions(fsm);
 closure = transitions+;
 return (s : closure[s] | str s <- carrier(transitions));
}

Transitive closure

Extract transitions
as a graph

Enumerate all states

 return a map in which each state
 is associated with all states
that can be reached from it

Map comprehension

EASY Meta-Programming with RASCAL 21

CanReach (3)
module demo::StateMachine::CanReach
… (previous sheet)

public graph[str] getTransitions(FSM fsm){
 return {
 { < ”<from>”, “<to>” > |
 /`trans <Id a>: <Id from> -> <Id to>` <- fsm
 }
}

Enumerate all transitions in the FSM

Convert a tree element to a string Concrete pattern with variables

EASY Meta-Programming with RASCAL 22

ExampleExample

Generating Generating
Getters Getters
and and
SettersSetters

EASY Meta-Programming with RASCAL 23

Generating Getters and Setters

● Given:
● A class name
● A mapping from names to types

Required:
● Generate the named class with getters and setters

EASY Meta-Programming with RASCAL 24

Generating getters and setters:
Input

public map[str, str] fields = (
 "name" : "String",
 "age" : "Integer",
 "address" : "String"
);

Field name of type String

Field age of type Integer

Field address of type String

genClass("Person", fields) Generate class person
with these fields

EASY Meta-Programming with RASCAL 25

Generting getters and setters
Expect Output

public class Person {
 private Integer age;
 public void setAge(Integer age) { this.age = age; }
 public Integer getAge() { return age; }

 private String name;
 public void setName(String name) { this.name = name; }
 public String getName() { return name; }

 private String address;
 public void setAddress(String address) {
 this.address = address; }
 public String getAddress() { return address; }
}

EASY Meta-Programming with RASCAL 26

Generating Getters and Setters
public str genClass(str name, map[str,str] fields) {
 return "
 public class <name > {
 <for (f <- fields) {
 str t = fields[f];
 str n = capitalize(f);>
 private <t> <f>;
 public void set<n>(<t> <f>) { this.<f> = <f>; }
 public <t> get<n>() { return <f>; }
 <}>
 }
";
}

Red is interpolated

String with computed interpolations

Blue is literal

EASY Meta-Programming with RASCAL 27

ExampleExample

Fact extractionFact extraction
andand
visualizationvisualization

EASY Meta-Programming with RASCAL 28

While working on a Java project ...

● For example, jspwiki
● What are the different file types used in this

project?

EASY Meta-Programming with RASCAL 29

What are the file types in this
project?

module demo::filetypes
import Resources;
import viz::Chart;

public void main(){
 jspwiki = getProject(|project://jspwiki|);
 extensions = ();
 visit(jspwiki){
 case file(loc l): extensions[l.extension]? 0 += 1;
 }
 pieChart("Extensions", extensions, dim3());
}

Charting tools

Access to Eclipse resources

Get all file names from project “jspwiki”

Visit all filenames and count extensions

Draw them as 3D pieChart

Empty map to count extensions

EASY Meta-Programming with RASCAL 30

EASY Meta-Programming with RASCAL 31

The Rascal Standard Library
● Benchmark

● Boolean

● Exception

● (Labelled) Graph

● Integer

● IO

● JDT (Eclipse only)

● List

● Location

● Map

● Node

● Real

● Relation

● RSF

● Resource (Eclipse only)

● Set

● String

● Subversion

● Tuple

● ValueIO

● viz::Chart

● viz::View (Eclipse only)

EASY Meta-Programming with RASCAL 32

Long-term Perspective

● The Rascal language supports the EASY
paradigm:
● creation and execution of fact analysis and

transformation tools
● DSLs
● meta-programming

● Familiar notation and Eclipse integration lower
barrier to entry

● Work in progress

EASY Meta-Programming with RASCAL 33

Information

General information:
http://www.meta-environment.org

Latest version of Rascal

documentation:
http://www.meta-environment.org/doc/books/analysis/rascal-
manual/rascal-manual.[html|pdf]

Download Rascal implementation:
http://www.meta-environment.org/Meta-Environment/Rascal

EASY Meta-Programming with RASCAL 34

Meet Charlotte

● Charlotte works at a large financial institution in
Paris

● Objective: connect legacy software to the web
● Solution:

● extract call information from the legacy code,
analyze it, and synthesize an overview of the call
structure

● Use entry points in the legacy code as entry points
for the web interface

● Automate these transformations

EASY Meta-Programming with RASCAL 35

Meet Daniel

● Daniel is concurrency researcher at one of the
largest hardware manufacturers worldwide

● Objective: leverage the potential of multi-core
processors and find concurrency errors

● Solution:
● extract concurrency-related facts from the code

(e.g., thread creation, locking), analyze these facts
and synthesize an abstract automaton

● Analyze this automaton with third-party verification
tools

EASY Meta-Programming with RASCAL 36

Meet Elisabeth

● Elisabeth is software architect at an airplane
manufacturer

● Objective: Model reliability of controller software
● Solution:

● describe software architecture with UML and add
reliability annotations

● Extract reliability information and synthesize input
for statistics tool

● Generate executable code that takes reliability into
account

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

