
1

Interplay Between Interplay Between Interplay Between Interplay Between
Language andLanguage andLanguage andLanguage and
Formal VerificationFormal VerificationFormal VerificationFormal Verification

Interplay Between Interplay Between Interplay Between Interplay Between
Language andLanguage andLanguage andLanguage and
Formal VerificationFormal VerificationFormal VerificationFormal Verification

Dr. Carl SegerDr. Carl Seger

Senior Principal EngineerSenior Principal Engineer
Strategic CAD Labs, Intel Corp.Strategic CAD Labs, Intel Corp.

Nov. 4, 2009Nov. 4, 2009

Quiz

2

OutlineOutline

�� Context of talkContext of talk

�� Evolution of a custom languageEvolution of a custom language

�� Stage One: Scripting & implementation languageStage One: Scripting & implementation language

�� Stage Two: Property specification languageStage Two: Property specification language

�� Stage Three: Term languageStage Three: Term language

�� Stage Four: Modeling languageStage Four: Modeling language

�� Lessons learnedLessons learned

3

ContextContext

4

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

The Design Process at 10,000 ftThe Design Process at 10,000 ft

Architecture
Analysis

Development
of micro-

architecture

Mapping
of RTL to

transistors

Development
of mask

that yield
transistors
and wires

Making Silicon
+

Stepping(s)

Chip

This is the theory…

Ideas

Validation

MAS: Micro-Architecture Specification

RTL: Register-Transfer Language

5

In Practice…In Practice…

Original

Product

Target

~2-3 years ~1 year

Test

EngineerMask

Designer

Design

Engineer

Micro-

Architect

Architect

Target

Repainted

to fit

Reality

6

ValidationValidation

Original
Product
Target

MAS Schematics Layout/

Mask

RTL

Architecture
Analysis

Development
of micro-

architecture

Mapping
of RTL to

transistors

Development
of mask

that yield
transistors
and wires

Making Silicon
+

Stepping(s)

Chip

Validation

How to: 1) check we captured what we wantedHow to: 1) check we captured what we wanted
2) check that we did not make a mistake along the w ay2) check that we did not make a mistake along the w ay

7

Evolution of a custom languageEvolution of a custom language

8

Stage One: Scripting &
Implementation
Stage One: Scripting &
Implementation
�� A generalized symbolic circuit simulator forms the core of our A generalized symbolic circuit simulator forms the core of our

formal verification environment.formal verification environment.

�� Symbolic Trajectory Evaluation engineSymbolic Trajectory Evaluation engine

-- Combines partial order (lattice) modeling and symbolic expressioCombines partial order (lattice) modeling and symbolic expressionsns

�� Binary Decision Diagrams tightly integrated into languageBinary Decision Diagrams tightly integrated into language

�� An interpreted language is very helpful in driving such an An interpreted language is very helpful in driving such an
engineengine

�� We choose a pure (and very simple) lazy functional language We choose a pure (and very simple) lazy functional language
as scripting languageas scripting language

�� Called flCalled fl

9

Example of fl usage: IExample of fl usage: I

10

Example of fl usage: IIExample of fl usage: II

11

Example of fl usage: IIIExample of fl usage: III

Circuit to evaluate the Collatz conjecture.

12

Example of fl usage: IVExample of fl usage: IV

13

Example of fl usage: VExample of fl usage: V

14

Example of fl usage: VIExample of fl usage: VI

15

Example of fl usage: VIIExample of fl usage: VII

16

Example of fl usage: VIIIExample of fl usage: VIII

17

Example of fl usage: IXExample of fl usage: IX

18

Example of fl usage: XExample of fl usage: X

19

Stage Two: Property SpecificationStage Two: Property Specification

�� fl with fl with BDDsBDDs started to look like a very useful specification started to look like a very useful specification
language as well.language as well.

�� To make this even better, we extended the language by To make this even better, we extended the language by
allowing conditionals to be symbolicallowing conditionals to be symbolic

�� Since we could only represent Boolean functions, the Since we could only represent Boolean functions, the ““thenthen”” and and ““elseelse””
sides must have the same sides must have the same ““shapeshape””

�� The extended (evolved) fl now served as:The extended (evolved) fl now served as:

�� Property specification languageProperty specification language

�� Implementation language for FPV & FEV toolsImplementation language for FPV & FEV tools

�� Scripting language for the endScripting language for the end--useruser

20

Verification ChallengeVerification Challenge

TASK: Bridge the gap from the circuit to the ideal
specification in the minimum amount of time & cost.

time
ckt

ideal
spec

21

Initial Phases of VerificationInitial Phases of Verification

�� Sketch initial specificationSketch initial specification

�� Get circuit to Get circuit to ““wigglewiggle”” (respond to simple (respond to simple
inputs)inputs)

ideal spec

wiggling

ideal
spec

ckt
time

22

model checking capacity limit
how to bridge the gap?

ideal spec

model
checking
wiggling

ideal
spec

ckt
time

Verification With Only Model
Checking
Verification With Only Model
Checking

�� With industrial circuits:With industrial circuits:
very quickly encounter model checking capacity very quickly encounter model checking capacity
limitslimits

23

ideal spec

model
checking
wiggling

low level
specs

ideal
spec

ckt
time

model checking capacity limit

Verification With Only Model
Checking
Verification With Only Model
Checking

�� Forced to bridge the gap with:Forced to bridge the gap with:
�� large collection of lowlarge collection of low--level specifications level specifications

�� informal checks/hand proofs against ideal specificationinformal checks/hand proofs against ideal specification

-- -- long tedious (uninteresting) hand proofs...long tedious (uninteresting) hand proofs...

– ...usually wrong…

24

Verification With Only Model
Checking
Verification With Only Model
Checking

ideal spec

model
checking
wiggling

low level
specs

ideal
spec

ckt
time

model checking capacity limit

�� Forced to bridge the gap with:Forced to bridge the gap with:
�� large collection of lowlarge collection of low--level specifications level specifications

�� informal checks/hand proofs against ideal specificationinformal checks/hand proofs against ideal specification

-- long tedious (uninteresting) hand proofs...long tedious (uninteresting) hand proofs...

– ...usually wrong…

25

Verification With Only Model
Checking
Verification With Only Model
Checking

�� Forced to bridge the gap with:Forced to bridge the gap with:
�� large collection of lowlarge collection of low--level specifications level specifications

�� informal checks/hand proofs against ideal specificationinformal checks/hand proofs against ideal specification

-- long tedious (uninteresting) hand proofs...long tedious (uninteresting) hand proofs...

...usually wrong…

ideal spec

model
checking
wiggling

low level
specs

ideal
spec

ckt
time

model checking capacity limit

26

Verification with only Theorem
Proving
Verification with only Theorem
Proving

 Theorem proving (with significant manual effort) can Theorem proving (with significant manual effort) can
establish correctness against abstract circuit models.establish correctness against abstract circuit models.

�� Abstract model often significantly simpler than actual HWAbstract model often significantly simpler than actual HW

�� Abstract model is not verified/verifiable against actual HWAbstract model is not verified/verifiable against actual HW

ideal spec
theorem
proving

ideal
spec

ckt
time

27

Verification with Combined MC &
TP
Verification with Combined MC &
TP

 Theorem proving provides formal link fromTheorem proving provides formal link from
model checking results to ideal model checking results to ideal
specification.specification.

ideal spec

model
checking
wiggling

theorem
proving

ideal
spec

ckt
time

model checking capacity limit

28

Stage Three: Term Language Stage Three: Term Language

�� HOLHOL--Voss (separate theorem proving and model checking tools):Voss (separate theorem proving and model checking tools):

�� HOL provided TP, fl provided model checking capabilitiesHOL provided TP, fl provided model checking capabilities

�� fl was used as an evaluation engine for HOL functionsfl was used as an evaluation engine for HOL functions

�� Very difficult to use, common case slow, overkillVery difficult to use, common case slow, overkill

�� VossProverVossProver (deep embedding of logic in fl)(deep embedding of logic in fl)

�� IdiotIdiot--savant savant proverprover for combining model checking resultsfor combining model checking results

�� Easier to use, but still extra layer of interpretationEasier to use, but still extra layer of interpretation

�� Very cumbersome to extend Very cumbersome to extend

�� ReflectionReflection

�� Introduced reflection in fl so that fl programs can manipulate oIntroduced reflection in fl so that fl programs can manipulate other fl ther fl
programs.programs.

�� No overhead for end user, trivial to extend, some No overhead for end user, trivial to extend, some ““noisenoise”” in the theorem in the theorem
proving from fl (e.g., print statements etc.)proving from fl (e.g., print statements etc.)

29

Stage Four: Modeling LanguageStage Four: Modeling Language

�� The most recent enhancement to fl has been the The most recent enhancement to fl has been the
incorporation of more flexible syntax/semanticsincorporation of more flexible syntax/semantics

�� The main purpose is to make it possible to provide a The main purpose is to make it possible to provide a
practical language for Highpractical language for High--level modeling that has level modeling that has
an an ““acceptableacceptable”” syntax to end userssyntax to end users

�� Shallow embedding for efficiencyShallow embedding for efficiency

�� Reflection provides a deep embeddingReflection provides a deep embedding

�� Programmable syntax makes domainProgrammable syntax makes domain--specific language specific language
development easierdevelopment easier

�� The main challenge is error reporting!!!The main challenge is error reporting!!!

30

Lessons LearnedLessons Learned

31

Why was it successful?Why was it successful?

�� Forte provided a unified environment that made it easy to Forte provided a unified environment that made it easy to
build, extend, and use FV tools in.build, extend, and use FV tools in.

�� There was a natural fit in the semantic model for There was a natural fit in the semantic model for
specifications (functional)specifications (functional)

�� The performance of the interpreter was not on the critical The performance of the interpreter was not on the critical
path for most applicationspath for most applications

�� The system was easily and safely extensible by the The system was easily and safely extensible by the
(experienced) user.(experienced) user.

�� Forte provided a major new capability!Forte provided a major new capability!

�� The cost of The cost of ““swallowingswallowing”” fl was paid back by the new capabilities.fl was paid back by the new capabilities.

32

A new language is successful A new language is successful A new language is successful A new language is successful
only if it is part of a system only if it is part of a system only if it is part of a system only if it is part of a system
that solves a previously that solves a previously that solves a previously that solves a previously
unsolved problem.unsolved problem.unsolved problem.unsolved problem.

A new language is successful A new language is successful A new language is successful A new language is successful
only if it is part of a system only if it is part of a system only if it is part of a system only if it is part of a system
that solves a previously that solves a previously that solves a previously that solves a previously
unsolved problem.unsolved problem.unsolved problem.unsolved problem.

New languages are needed New languages are needed New languages are needed New languages are needed
regularly to solve previously regularly to solve previously regularly to solve previously regularly to solve previously
unsolved problemsunsolved problemsunsolved problemsunsolved problems…………

New languages are needed New languages are needed New languages are needed New languages are needed
regularly to solve previously regularly to solve previously regularly to solve previously regularly to solve previously
unsolved problemsunsolved problemsunsolved problemsunsolved problems…………

33

Backup SlidesBackup Slides

34

CoverageCoverage

Low %
Covered

100 %
Covered

��Requires almost Requires almost ∞∞
cycles / timecycles / time

��Difficult / impossible to Difficult / impossible to
avoid broken featuresavoid broken features

��After generator created, After generator created,
easy to writeeasy to write

��Requires little uArch Requires little uArch
knowledgeknowledge

��Can create things no one Can create things no one
would ever think ofwould ever think of

Generic Generic
Random TestsRandom Tests

��Requires strong uArch Requires strong uArch
knowledgeknowledge

��Targets areas most likely Targets areas most likely
to be of concernto be of concern

��Greatly reduces cycle Greatly reduces cycle
requirementsrequirements

��Develops strong uArch Develops strong uArch
knowledgeknowledge

Directed Directed
Random TestsRandom Tests

��Requires almost Requires almost ∞∞
number of testsnumber of tests

��Difficult to hit uArch Difficult to hit uArch
conditionsconditions

��Easy to writeEasy to write

��Easy to understandEasy to understand

��Easy to reuseEasy to reuse

Directed TestsDirected Tests

��Requires special skillsRequires special skills

��Constrained by Constrained by
complexitycomplexity

��100% coverage100% coverage

��Proves absence of bugsProves absence of bugs
Formal Formal
VerificationVerification

ConConProPro

Today’s focus

35

Formal VerificationFormal Verification

�� Exhaustive simulation is infeasible.Exhaustive simulation is infeasible.

�� cannot prove the absence of bugscannot prove the absence of bugs

�� Broad classification:Broad classification:

�� Formal equivalence verification: FEVFormal equivalence verification: FEV

-- Prove two models are the sameProve two models are the same

-- Highly automatedHighly automated

-- In widespread useIn widespread use

�� Formal property verification: FPVFormal property verification: FPV

-- Prove model satisfy some propertyProve model satisfy some property

-- User drivenUser driven

-- Primarily used in high risk areasPrimarily used in high risk areas

Applications in Design Flow:Applications in Design Flow:

uArch Specification

RTL Design

Schematics

Architect conception High level FPV

RTL FPV

Equiv Check
(FEV)

36

Ordered Binary Decision
Diagrams: BDDs
Ordered Binary Decision
Diagrams: BDDs

�� Canonical representation of Boolean functionsCanonical representation of Boolean functions

�� Efficient algorithms for AND,OR,NOT, quantification, Efficient algorithms for AND,OR,NOT, quantification,
image computation, etc.image computation, etc.

�� Variable ordering criticalVariable ordering critical
�� Static heuristicsStatic heuristics

�� Dynamic variable reDynamic variable re--orderingordering

�� Handles ~80% of all equivalenceHandles ~80% of all equivalence
verification tasks.verification tasks.

�� With major effort, can push to 90%With major effort, can push to 90%

�� Most modern FV tools use Most modern FV tools use BDDsBDDs oror
a combination of a combination of BDDsBDDs and SAT solvers and SAT solvers

A

B B

C

10

37

Example of Property: FP Add

// Feldman & Retter, Computer Architecture
// (McGraw-Hill,94) pp. 489-491
let ADDmodel pc rc in1 in2 =

...
// Find the amount of shift needed
let diff = ex2 '-' ex1 in
let rsh = MINv diff (int2bv 68) in
// Do the shift
let sgf1' = srshift 68 rsh (sgf1@[F]) in
let sgf2' = sgf2@[F] in
// Perform the sum (or subtract)
let add = (sign fp1 = sign fp2) in
let sum = if add then (sgf2' '+' sgf1')

else (sgf2' '-' sgf1')
// Now perform roundin
...

38

Pop QuizPop Quiz

�� Order the following in order of size (smallest first)Order the following in order of size (smallest first)

Influenza A virus
Transistor in
high volume

microprocessor
in 2009

Water molecule

Grains of sand

Answers:

39

Answer to Pop QuizAnswer to Pop Quiz

�� Order the following in order of size (smallest first)Order the following in order of size (smallest first)

Influenza A virus
Transistor in
high volume

microprocessor
in 2009

Water molecule

Grains of sand

~100nm ~30nm ~0.3nm ~100,000nm

123 4

