Interplay Between
Language and
Eormal Verification

Dr. Carl Seger

Senior Principal Engineer
Strategic CAD Labs, Intel Corp.

Nov. 4, 2009

(intelzapaheadw

Outline

e Context of talk

* Evelution ofia custom language
> Stage One: Scripting & implementation language
> Stage Two: Property specification language
> Stage Three: Term language

> Stage Eour: Modeling language

* | essons learned

The Design Process at 10,000 ft

Micro- Design Mask Test

Architect 5 chitect Engineer Designer Engineer

Develop

|l mask Original

that yield V]I Product

transistors
and wires

Layout/
Mask

Validation

MAS: Micro-Architecture Specification
RTL: Register-Transfer Language This is the theory___

In Practice...

Architect

Micro-
Architect

~2-3 years

Mask
Designer

Test
Engineer

Original
Product
Target

S

arget
Repainted
to fit
Reality

Validation

that yield
transistors

Validation

~
e
W
é How to: 1) check we captured what we wanted
2) check that we did not make a mistake along thew ay

Evolution of a custom language

Stage One: Scripting &
Implementation

* A generalized symbolic circuit simulator forms the core of our
fermal verification environment.

> Symbolic Trajectory Evaluation engine

- Coembines partial order (lattice) modeling and symbolic expressions

* Binary Decision Diagrams tightly integrated into language

* Aninterpreted language is very helpful in driving such an
engine

* \We cheose a pure (and very simple) lazy functional language
as scripting language

> Called fl

Example of fl usage:

reFLect ‘ mad Ao

: let a = variable "a";

a: :bool
: 1let b = variahle "h";
(h: :hool
l: a AND b;
[h&a: :hool

let ¢ =wvariable "go";
(< thool
. {(a BND (b XOR c)) OR
lesbh + c¢&!'b + la::bool

| : HOT (HOT a OR HOT h)
F: :bhool

l: HOT (HOT a OR HOT h)
|'T: :hool

: HOT (NOT a OR HOT h)
iF::hool

HOT (NOT a OR HOT h)

a + b::hool

{HOT a OR b AND HOT ¢):
== HOT (a AMND h):

== (a AND h);

<=> HOT (a AHND h):;

<= HOT (a XOR h});

Example of fl usage:

reFLect ‘ mad ey Interrupt

: HOT (HOT a OR HOT h} <=> HOT (a AHD h};
'F::bool

: HOT (HOT a OR HOT b} «<=> HOT (a XOR b);

la + b::bhool

: Juant forall ["a","b"] {(Quant thereis ["¢"] ({a (a XOR b HORE c});
{F: :hool

: puant forall ["a","bh"] (puant thereis ["¢"] ((a (a XO0R b XOR ¢));
'F: :bool

: Quant forall ["a","h"] (Quant_ thereis ["c¢"] ((a {a XOR b XOR c});
T: :bool

Example of fl usage: Ili

tre (15 :0] t15:0]

k[

{50 4d res[16:0
. izl always_comb

ol
[
an ra=[15 0] gven res[h:]
= G LAY
AET
RERY

=

trew[15:0

s plere b N p B

Circuit to evaluate the Collatz conjecture.

Example of fl usage:

reFLect ‘ et st

it let start = {'start::hit};

istart: :bhit

: let tO = {'t0: :word};

it0: :word

i: let ckt = pexlif2fsm (get_pexlif in_window);

ickt:: fsm

12 let eyeles n =
[{T,"clk",F,2*i,2*i+1) | i in 0 upto (n-1)] ®
[{T,"clk",T,2*%i+1,2%i+2) | i in 0 upto (n-1)]

::ink -> (bool # string # bool # int # int) list
150;

let ant = {cycles H) &
(start disv "1 from 0 to 1)RE
{start isv "0 from 1 to (2*H))&
(t0 disv '6 from O to 1)

::{bool # string # bool # int # int) list
"-g" ¢kt [] ant [] (map {(‘\n.n,0,2*H) (nodes ckt));

0
1
2
3

Example of fl usage: V

File Selection _| Time line _| Display Value Zuumﬁl]l]_ *

|£[15:0]
| x hO006

Example of fl usage:

reFLect ‘ et st

let £t wvar = {'a::word};
t0 _wvar: :word
1 let EO0_wars = wordZbw t0_war;
(t0 wvars: :hool list
let ant = {cycles H) @
(start isv "1 from 0 to 1)RE
(start disv "0 from 1 to (2*H))&
(t0 disv t0_war from 0 to 1}

ant: : (hbool # string # bool # int # int) list

: 8TE "-s5" ckt [] ant [] (map (‘n.n,0, {(2*H)} (nodes ckt});
(Time: 0
. Time:
. Time:
.Time:
.Time:
.Time:
.Time:
. Time:
.Time:
. Time:
. Time:
.Time:
|.GC: Harking, sweeping, done. Used=1683941(Shared=19584,85at=1028) Freed: 144802
I Time: 12

L% =1 = = RO I T o Y =L I L L

Example of fl usage: VIiI

reFLect [1vad sy

|.Time: 295
. Time: 296
|.Time: 297
|.Time: 298
|.Time: 299
|.Time: 300
I'T: :hool

! let out_at_end = get_trace wal ckt "eql" (2*H-1);
out_at _end: :bool # hool
: let fail = out_at end = (F,T):;

: pick_example F fail;

|
E
|
ifail: :hool
|
isubstitution list:

' a[15:0]: 0000000000000000
i::example

;: pick_example F {(fail AND (t0 wars != (intZ2bv 0}}};
isubstitution list:

a[15:0]: 0000001011111011
|1 rexample

é: pick example F (fail
AND (tE0 _wars !'= (int?bwv 0))
AND HOT {(last t0_wars)
i)
'substitution list:
a[15:0]: 0000010111110110
I rexample

-

Example of fl usage: Vil

reFLect ‘ ARt B o

lettype model = Hodel
{rel: :bool}
{c_wars :: bool}
in_wars :: bool}

'

‘Hodel: :bool -> bool -> bool -> model
load model: :string -> bool -> string -> model
save _model::string -> model -> bool -> model
let c¢BA¥ model set =
let set = bdd current next set in
quant_forall model :>n_wars (model:>rel ==> set)

lcA¥: :model -> hool -> hool
let cEG model set =
letrec EGr cur =
let new =
laet cur' = bhdd current next cur in
quant_forall model :>n_wars (set OR {(model:>rel ==> cur'})
in
if new == cur then cur else EGr new
in
EGr F

,

cEBEG: rmodel - bhool -> hool

Example of fl usage: IX

reFLect ‘ mad Ay Interrupt Search:|

ff Use symbolic simulation to extract next-state relation
let modellt = Model B ¢ wars n_wvars;
imodel16: :model
: let setd = t_wars = (int2bv 1):
asetﬂ::hﬂol

let ok _set = ¢cEG modellbh setl;
ok _set: :hool
|: ok set;
Iteration
Iteration
[Iteration
Iteration
| Iteration
Iteration
Iteration
Tteration
ITteration
Tteration
Tteration
I Tteration
| Iteration
Iteration
Iteration
[Tteration
Iteration
Iteration
[Iteration
Iteration
| Iteration
Iteration
| Iteration

L= == R R = A

Pk otk o
W b Pl ek T

Example of fl usage: X

reFLect [Inad ot

iIteration 206
[Iteration 207
iIteration 208
iIteration 209
[Iteration 210
jIteration 211
ITteration 212
iIteration 213
iIteration 214
[Iteration 215
iIteration 216
iIteration 217
iIteration 218
[Iteration 219
iIteration 220
iIteration 221
iIteration 222
[Iteration 223
iIteration 224

it[12]18t[13]1&E[15] + t[11]1&E[13]1&E[14] + t[10]1&E[13] + t[A]&E[15] + E[G]1&E[13]&L]
1141 oR ...
|1 :hool

5: pick _example F ((HOT ok_set) AND (t_wars != int?bwv 0));
isubstitution list:

£E[15:0]: 0011100011100011
|: rexample

Stage Two: Property Specification

 fl with BDDs started to look like a very useful specification
language as well.

* /6. make this even better, we extended the language by
allowing conditienals to be symbolic > |

> Since we could only represent Boolean functions, the “then” and “else”
sides must have the same “shape”

» The'extended (evolved) fl now served as:
> Property specification language
> Implementation language for FPV & FEV tools

> Scripting language for the end-user

Verification Challenge

Ideal
spec

ckt

—.
time

TASK: Bridge the gap from the circuit to the ideal
specification in the minimum amount of time & cost.

Initial Phases of Verification

ideal .
spec] & deal spec

ckt ool wiggling
time

» Sketeh initial specification

» Get circuit to “wiggle” (respond to simple
INnputs)

Verification With Only Model
Checking

laeal _ .
specl & deal spec

how to bridge the gap?

model checking capacity limit

ckt y/ wiggling

—.
time

o With industrial circuits:

very guickly encounter model checking capacity
limits

Verification With Only Model
Checking

laeal .
spec] & deal spec

model checking capacity limit low level

—— RIS

ckt wiggling
time

» [Forced to bridge the gap with:

> large collection of low-level specifications

> Informal checks/hand proofs against ideal specification

Verification With Only Model

ﬁelgfcking

spec] & deal spec

model checking capacity limit

low level

ckt

—— RIS

wiggling

—

time

» [Forced to bridge the gap with:

> large collection of low-level specifications

> Informal checks/hand proofs against ideal specification
- long tedious (uninteresting) hand proofs...

Verification With Only Model

ﬁelgfcking

spec] & deal spec

model checking capacity limit

low level

ckt

—— RIS

wiggling

—

time

» [Forced to bridge the gap with:

> large collection of low-level specifications

> Informal checks/hand proofs against ideal specification
- long tedious (uninteresting) hand proofs...

...usually wrong...

Verification with only Theorem

Proving
spec] I deal spec

\\\

—.
time

Theorem proving (with significant manual effort) can
establish correctness against abstract circuit models.

ckt

> Abstract model often significantly simpler than actual HW

> Abstract model is not verified/verifiable against actual HW

Verification with Combined MC &
TP

ideal .
spec] I deal spec

model checking capacity limit \\\

4_/ wiggling

—.
time

Theorem proving provides formal link from
modell ehecking results to ideal
Specification.

Stage Three: Term Language

* HOL-Voss (separate theorem proving and model checking tools):
» IHOL provided TP, fl provided model checking capabilities
> fifwas used as an evaluation engine for HOL functions
> Very difficult to use, common case slow, overkill

* \/ossProver (deep embedding of logic in fl)
> ldiot-savant prover for combining model checking results
> Easierto use, but still extra layer of interpretation
> Veny cumbersome to extend

s Reflection

> Intreduced reflection in fl so that fl programs can manipulate other fl
programs.

> No overhead for end user, trivial to extend, some “noise” in the theorem
proving from fl (e.g., print statements etc.)

Stage Four: Modeling Language

* The most recent enhancement to fl has been the
Incorporation of more flexible syntax/semantics

* lhe main purpose Is to make it possible to provide a
practical language for High-level modeling that has
an“acceptable” syntax to end users

> Shallow embedding for efficiency
> Reflection provides a deep embedding

» Programmable syntax makes domain-specific language
development easier

* The main challenge is error reporting!!!

Lessons Learned

Why was it successful?

* [Forte provided a unified environment that made it easy to
bulld, extend, and use FV tools In.

There was a natural fit in the semantic model for
Specifications (functional)

TThe performance of the interpreter was not on the critical
path fer most applications

Jihe system was easily and safely extensible by the
(experienced) user.

Forte provided a major new capability!

> The cost of “swallowing” fl was paid back by the new capabilities.

A new language is successful
only if it is part of a system
that solves a previously
unsolved problem.

New languages are needed

regularly to solve previously
unsolved problems...

<| n te‘l Leap ahead”

Backup Slides

Coverage

Today’s focus

Pro

Con

Formal

100 % \erification

Covered

*100% coverage

*Proves absence of bugs

*Requires special skills

*Constrained by
complexity

Directed
Random Tests

*Targets areas most likely
to be of concern

*Greatly reduces cycle
requirements

*Develops strong uArch
knowledge

*Requires strong uArch
knowledge

Generic
Random Tests

*After generator created,
easy to write

*Requires little uArch
knowledge

*Can create things no one
would ever think of

*Requires almost «
cycles / time

*Difficult / impossible to
avoid broken features

Low % Directed Tests

Covered

*Easy to write
*Easy to understand

*Easy to reuse

*Requires almost «
number of tests

e Difficult to hit uArch
conditions

Formal Verification

» Exhaustive simulation is infeasible.

Agolieztilons Il Basie)n) Flovy
> cannet prove the absence of bugs

» Broad classification: AICAIteCt CONCEPUON = pjin jave] FPV

~
~
~

> Fermal equivalence verification: FEV o
uArch Specification

- Prove two models are the same

\\‘A
- Highly automated ! / RTL FPV
: RTL Design
- |niwidespread use

> Formal preperty verification: FPV Equiv Check
v FEV
- Prove model satisfy some property Schematics (FEV)

- User driven

- Primarily used in high risk areas

Ordered Binary Decision
Dlagrams' BDDs

» Canonical representation of Boolean functions

Efficient algorithms for AND,OR,NOT, quantification,
Image computation, etc.

\/ariable ordering critical ‘

» Static heuristics

~ Dynamic variable re-ordering ‘ ‘

iHandles ~80% of all equivalence
verification tasks.

With major effort, can push to 90% ‘

Most modern FV tools use BDDs or
a combination of BDDs and SAT solvers

Example of Property: FP Add

I/l Feldman & Retter, Computer Architecture
Il (McGraw-Hill,94) pp. 489-491
let ADDmodel pcrc inlin2 =

// Find the amount of shift needed

let diff = ex2 '-' ex1 In

let rsh = MINv diff (int2bv 68) In

// Do the shift

let sgfl' = srshift 68 rsh (sgfl@][F]) in

let sgf2' = sgf2@[F] in

/[Perform the sum (or subtract)

let add = (sign fpl = sign fp2) Iin

let sum = if add then (sgf2' '+' sgfl’)
else (sgf2' '-' sgfl’)

// Now perform roundin

Pop Quiz

* Order the following in order of size (smallest first)

Grains of sand

Influenza A virus . . Water molecule
Transistor In

high volume
microprocessor
in 2009

Answers:

Answer to Pop Quiz

* Order the following in order of size (smallest first)

Influenza A virus

~30nm

Transistor in
high volume
microprocessor
in 2009

2

~0.3nm

Water molecule

~100,000nm

Grains of sand

