
Stroustrup - Bergen 1

Evolving a widely used language
Why and how?

Bjarne Stroustrup
Texas A&M University
http://www.research.att.com/~bs

Beautiful Bergen

Stroustrup - Bergen 2

Thanks!

Stroustrup - Bergen 3

Stroustrup - Bergen 5

Programming languages
• A programming language exists to help people express ideas

– To help build useful and/or interesting systems
– As problems change, a language must evolve (or die)
– Many more users implies different kinds of users and different problems
– Language features exist to serve design and programming techniques

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1979 1985 1988 1991 1995 2000 2004 2008

C++ users
.

Stroustrup - Bergen 6

C++ applications
www.research.stroustrup/~bs/applications.html

• Telecommunications
• Google
• Microsoft applications and GUIs
• Linux tools and GUIs
• Games
• Financial systems
• PhotoShop
• …

• Mars Rovers
• Marine diesel engines
• Cell phones
• Human genome project
• Micro electronics design and manufacturing
• …

The world of 1975-85
• Much work still done in assembler

– Essentially all embedded systems programming
– Most systems programming
– Quite a lot of applications programming

• OOP – what’s that?
– In both academia and industry
– The few that have heard of it deem it

• Just “slow graphics”
• Unsuitable for ordinary mortals
• Incapable of interoperate as part of a system

• Academia and industry are quickly drifting apart
– It was not always so in CS; e.g. Dijkstra, Hoare, Backus, started out in

industry
Stroustrup - Bergen 7

The idea of C++
• C + Simula

– Direct map to hardware + abstraction
– Efficiency + structure

• Known problems
– Non-uniform handling of built-in and user-defined types in Simula
– Lack of static type safety in C
– No parameterized types or procedures in either

• Get something working and then improve on it
– First non-research user after 6 months
– C++ compiler in C++
– Direct support of a variety of colleagues

Stroustrup - Bergen 8

Stroustrup - Bergen 9

What’s distinctive about C++?
• Stability

– Essential for real-world software
– 1985-2008
– 1978-2008 (C and C with Classes)

• Non-proprietary
– Yet almost universally supported
– ISO standard from 1998

• Direct interface to other languages
– Notably C, assembler, Fortran

• Abstraction + machine model
– Zero overhead principle

• For basic operations (e.g. memory access) and abstraction mechanisms
– User-defined types receive the same support as built-in types
– Standard library written in the language itself

• And most non-standard libraries

Stroustrup - Bergen 10

Aims for C++
• Support real-world software developers

– “better software now”
– by “better” I mean correct, maintainable, efficient, portable, …

• Change the way people think about software
– Object-oriented programming
– Generic programming
– Resource management
– Error handling

• Functional, not academic, beauty
– “even I could have designed a

much prettier language” – B.S. 1984 or so

Stroustrup - Bergen 11

Language features – 1979-1990
• C with Classes (1979-84)

– Function argument declarations and checking
– const (also in constant expressions)
– Classes
– Derived classes
– Constructors, destructors
– new and delete
– Inline functions

• C++ (in 1983-86)
– Overloading (incl. =, [], and ())
– virtual functions
– Type-safe linkage

• C++ (1988-90)
– Templates
– Exceptions

Huge impact

Not in C until
much later

Rather late

Stroustrup - Bergen 12

C++ ISO Standardization – Membership
• About 22 nations

(8 to 12 at a meeting)
– ANSI (US national committee)

hosts the technical meetings
– Other nations have further

technical meetings
• Membership have varied

– 100 to 200+
• 200+ members currently

– 40 to 100 at a meeting
• ~60 currently

• Most members work in industry
• Most are volunteers

– Even many of the company representatives
• Most major platform, compiler, and library vendors are represented

– E.g., IBM, Intel, Microsoft, Sun
• End users are underrepresented

Stroustrup - Bergen 13

C++ ISO Standardization – Process
Formal, slow, bureaucratic, and democratic

– “the worst way, except for all the rest”
(apologies to W. Churchill)

Most technical work happens
– in “working groups”
– electronically between meetings

C++ ISO Standardization –
Organization

• (ad hoc) Working groups
– Core
– Library
– Evolution

• Concurrency

• “mailings”
– “papers” presenting issues and proposals

• Hundreds each year; see WG21

• “reflectors”
– Achieved mailing lists

• Many (even) more “ad hoc” activities
– E.g. implementers presenting progress

Stroustrup - Bergen 14

1 General 1

2 Lexical conventions 15

3 Basic concepts 31

4 Standard conversions 79

5 Expressions 85

6 Statements 123

7 Declarations 134

8 Declarators 175

9 Classes 208

10 Derived classes 224

11 Member access control 236

12 Special member functions 248

13 Overloading 278

14 Templates 310

15 Exception handling 430

16 Preprocessing directives 440

17 Library introduction 453

18 Language support library 474

19 Diagnostics library 504

20 General utilities library 522

21 Strings library 661

22 Localization library 702

23 Containers library 758

24 Iterators library 873

25 Algorithms library 910

26 Numerics library 956

27 Input/output library 1039

28 Regular expressions library 1127

29 Atomic operations library 1169

30 Thread support library 1186

A Grammar summary 1224

B Implementation quantities 1246

C Compatibility 1248

Stroustrup - Bergen 15

C++ standardization – why bother?
• The ISO standards process is central

– Standard support needed for mainstream use
• Huge potential for improvement of application code
• For (far too) many “if it isn’t in the standard it doesn’t exist”

– Significant defense against vendor lock-in
– C++ has no rich owner

• who can dictate changes, pay for design, implementation, marketing, etc.
– The C++ standards committee is the central forum of the C++ community

• Endless discussions among people who would never meet otherwise
– The committee receives massive feedback from a broad section of the community

• Much of it industrial
– The committee is somewhat proactive

• Adds features not previously available in the C++ world

Stroustrup - Bergen 16

C++ ISO Standardization – Results
1998 ISO standard

– 22-0 vote
2003 Technical Corrigenda

– “bug fix release”; no new features
2008 Registration draft for C++0x

– We hoped for C++09
2010 CD expected

– Should lead to C++0B

• Technical reports
– Library (2004)
– Performance (2004)
– Decimal floating point (2008)
– Library2
– Modularity

Stroustrup - Bergen 17

Interlocking themes
• Stability and Compatibility

– “make the language much better but don’t break my code”
• Scale

– Million-line projects became common
– Specification – precise and complete
– Portability

• Resource management
– Invariants, RAII

• Type safety
– Containers

• Performance
– Compactness

• Equal support for user-defined and built-in types
– Value types, scoped objects

• User skills required
– C++ should not be just expert friendly

Alternatives to ISO Standardization

• Corporate ownership
– Maybe “softened” by customer involvement

• Tame standards bodies
• “Benign dictator for life”

– “Benign”
• No change

– Just get it right at first and don’t change
• Chaos

– Dialects

Stroustrup - Bergen 18

Stroustrup - Bergen 19

What could be done: The STL
• Ideal: The most general and most efficient

expression of an algorithm
– Focus on algorithms
– Separate algorithms from data

• Using iterators
– Go from the concrete to the abstract

• Not the other way
– Use compile-time resolution to eliminate overheads

• Inlining and overloading
– Where needed, parameterize with policies

• E.g. sorting criteria

Stroustrup - Bergen 20

C++0x: 2002-2008
• Overall goals

– Make C++ a better language
• for systems programming
• for library building

– Make C++ easier to teach and learn
• generalization
• better libraries

• Massive pressure for
– More language features
– Stability / compatibility

• Incl. C compatibility
• Insufficient pressure for

– More standard libraries
• The committee doesn’t have the resources required for massive library

development

Stroustrup - Bergen 21

C++0x: Areas of change
• Machine model and concurrency

– Memory model
– Threads library, asynchronous return
– Atomic API
– Thread-local storage

• Support for generic programming
– auto, decltype, template aliases, Rvalue references, …
– General and uniform initialization
– Lambdas

• Etc.
– improved enums
– long long, C99 character types, etc.
– …

• Libraries
– Regular expressions
– Hashed containers
– …

A feature too far
• Concepts
• High-level concurrency features
• Garbage collection
• Modules

• How much can be done to a widely used language?
– We have pushed the envelope
– Maybe that can’t continue?

• If so, more for person issues than for technical issues
• And the technical issues mostly relates to complexity from “feature

interactions”
Stroustrup - Bergen 22

What kind of people participates?
• Idealists

– To change the language and the world
– Often busy at other things (essential), sometimes single issue (very

bad), sometimes undisciplined (bad), often lasts just a couple of years
(just enough to do something, good or bad)

• Damage controllers
– To protect the language from the idealists

• Corporate representatives
– To guard their corporation’s interests
– Big companies differ from small companies

• Bureaucrats
– People who like to go to meetings
– Can be on time and keep long lists (essential skills)

Stroustrup - Bergen 23

What kinds of people participates?
• Lots of implementers

– Compilers
– Libraries
– tools

• Few users (far too few)
– Application builders
– Educators
– Researchers

Stroustrup - Bergen 24

Stroustrup - Bergen 25

More information
• My HOPL-II and HOPL-III papers
• The Design and Evolution of C++ (Addison Wesley 1994)
• My home pages

– Papers, FAQs, libraries, applications, compilers, …
• Search for “Bjarne” or “Stroustrup”

• The ISO C++ standard committee’s site:
– All documents from 1994 onwards

• Search for “WG21”
• The Computer History Museum

– Software preservation project’s C++ pages
• Early compilers and documentation, etc.

– http://www.softwarepreservation.org/projects/c_plus_plus/
– Search for “C++ Historical Sources Archive”

	Evolving a widely used language�Why and how?
	Beautiful Bergen
	Thanks!
	Programming languages
	C++ applications�www.research.stroustrup/~bs/applications.html
	The world of 1975-85
	The idea of C++
	What’s distinctive about C++?
	Aims for C++
	Language features – 1979-1990
	C++ ISO Standardization – Membership
	C++ ISO Standardization – Process
	C++ ISO Standardization – Organization
	C++ standardization – why bother?
	C++ ISO Standardization – Results
	Interlocking themes
	Alternatives to ISO Standardization
	What could be done: The STL
	C++0x: 2002-2008
	C++0x: Areas of change
	A feature too far
	What kind of people participates?
	What kinds of people participates?
	More information

